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Abstract

Segmentation of the heart structures helps compute the cardiac contractile func-

tion quantified via the systolic and diastolic volumes, ejection fraction, and myocardial

mass, representing a reliable diagnostic value. Similarly, quantification of the my-

ocardial mechanics throughout the cardiac cycle, analysis of the activation patterns

in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis

indicators. Furthermore, high quality anatomical models of the heart can be used

in planning and guidance of minimally invasive interventions under the assistance of

image guidance.

The most crucial step for the above mentioned applications is to segment the ven-

tricles and myocardium from the acquired cardiac image data. Although the manual

delineation of the heart structures is deemed as the gold-standard approach, it re-

quires significant time and effort, and is highly susceptible to inter- and intra-observer

variability. These limitations suggest a need for fast, robust, and accurate semi- or

fully-automatic segmentation algorithms. However, the complex motion and anatomy

of the heart, indistinct borders due to blood flow, the presence of trabeculations, in-

tensity inhomogeneity, and various other imaging artifacts, makes the segmentation

task challenging.

In this work, we present and evaluate segmentation algorithms for multi-modal,

multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV)

blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition

using local phase based filtering and graph-cut technique, propagate the segmenta-

tion throughout the cardiac cycle using non-rigid registration-based motion extrac-

tion, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool

and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging

(MRI) dataset by incorporating average atlas based shape constraint into the graph-

cut framework and iterative segmentation refinement. The developed fast and robust

framework is further extended to perform right ventricle (RV) blood-pool segmen-

tation from a different open-source 4D cardiac cine MRI dataset. Next, we employ

convolutional neural network based multi-task learning framework to segment the

myocardium and regress its area, simultaneously, and show that segmentation based

computation of the myocardial area is significantly better than that regressed directly

from the network, while also being more interpretable. Finally, we impose a weak

shape constraint via multi-task learning framework in a fully convolutional network

and show improved segmentation performance for LV, RV and myocardium across

healthy and pathological cases, as well as, in the challenging apical and basal slices

in two open-source 4D cardiac cine MRI datasets.
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We demonstrate the accuracy and robustness of the proposed segmentation meth-

ods by comparing the obtained results against the provided gold-standard manual

segmentations, as well as with other competing segmentation methods.

Keywords: image segmentation; image registration; cardiac ultrasound; cine MRI;

cardiac function; atlas segmentation; graph-cut; convolutional neural network; fully

convolutional network; multi-task learning
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Chapter 1

Introduction, Background, and

Thesis Overview

The goal of this chapter is to provide the reader with an overview of the clinical

background for the proposed work, along with a brief and timely review of the literature

on medical image segmentation, while identifying current clinical challenges.

1.1 Medical Imaging

Medical imaging is a noninvasive technique of creating the visual representation

of the structure and function of interior organs of a body. When a body is exposed

to some form of energy that can penetrate through and interact with the tissues, the

detected signal containing information about the anatomical interaction can be used

to construct an image [1]. Hence, medical imaging can be interpreted as a solution

to a mathematical inverse problem, where the properties of tissue (cause) is inferred

from the observed energy signal (effect).

Visible light energy is used mostly outside the radiology department in light mi-

croscopy [2], endoscopy [3], and optical coherence tomography [4], due to its limited

ability to penetrate tissues at depth; whereas the electromagnetic spectrum outside

of the visible regime is typically used in diagnostic radiology. Depending on the

type of energy and the acquisition technology used, different modalities of medical

1
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images can be acquired. Some common imaging modalities routinely used in clin-

ical radiology are x-rays, computed tomography (CT), magnetic resonance imaging

(MRI), ultrasound (US), and nuclear medicine — single photon emission computed

tomography (SPECT), positron emission tomography (PET) [5–8]. There is no single

best imaging modality; rather, different imaging modalities are suitable for different

applications and provide complementary information about the patient.

1.1.1 X-Ray Imaging

X-ray is the first imaging modality discovered in 1895 by German physicist Conrad

Roentgen, who received the Nobel Prize in 1901 as he demonstrated its diagnostic

abilities for imaging human body. Diagnostic X-rays have a wavelength between

0.01nm and 0.1nm (corresponding to 123 keV to 12.3 keV energy range) with reason-

able attenuation to discriminate bone, soft tissue, and air. Since X-ray photons carry

enough energy to ionize atoms and disrupt molecular bonds, it is an ionizing modality,

and is harmful to living tissue with increased risk of radiation-induced cancer [9].

During imaging, the X-rays are transmitted through the body and collected on a

film or an array of detectors. Since the X-rays are attenuated more by bones than soft

tissues or air, the collected two-dimensional (2D) attenuation map serves as an image

with excellent spatial resolution. Despite its harmful effects, X-ray is extensively used

in the diagnosis of broken bones, lung cancer, breast cancer, etc. when the risk is

greatly out-weighted by the benefits of the examination.

1.1.2 Computed Tomography Imaging

Two-dimensional images produced by X-ray are not adequate for many diagnostic

applications requiring three-dimensional (3D) quantitative and qualitative informa-

tion about the anatomical structures. This led to the development of Computed

Tomography (CT); tomography referring to a picture (graph) of a slice (tomo). The

X-ray source and detector are mounted on a gantry that rotates around the pa-

tient capturing 2D projections from multiple angular view-points, which are then

reconstructed into a 3D axial slice through the patient via back-projection algorithm



www.manaraa.com

3

[7, 10, 11]. The patient lying on a movable bed is moved axially to acquire multiple

axial slices that are stacked together to produce a 3D CT image.

The reconstructed image represents the linear attenuation coefficient map of the

scanned object, which is converted to the standard Hounsfield unit (HU) correspond-

ing to the actual intensity values of the CT image.

CTnumber =
µ− µwater
µwater

× 1000 (1.1)

In a CT image, the intensity value for water is 0 HU, air is -1000 HU, and soft tissue,

bones have values from several hundred to several thousand HU, respectively.

The capability of modern helical and multislice CT scanners to produce very

high quality (less than 0.5mm isotropic resolution) full body scans in less than 1

minute acquisition time has established it as the most widespread diagnostic imaging

modality. CT scans are routinely used in clinic for head/full-body scan for diagnosis

of accident injuries, dental planning, detection of lung nodules, diagnosis of lung

emphysema, etc. Similarly, contrast enhanced CT is used for perfusion analysis of

brain, liver, and tumors, as well as analysis of vessels for stenoses and aneurysms.

Furthermore, the fast acquisition time of CT is suitable for cardiac imaging, hence,

is used for quantification of coronary artery calcification and examining the dynamic

motion of the heart muscles to detect abnormalities.

As CT scan involves multiple x-ray acquisitions, the patient is exposed to high

ionizing radiation, increasing the risk of cancer [12]. Hence, since the development of

the first clinical CT scanner in early 1970s, the field is mostly driven by the motivation

of reducing the acquisition time and lowering the radiation dose, while maintaining

the quality of images.

1.1.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a tomographic imaging technique that

produces 3D images of the human body based on the Nuclear Magnetic Resonance

(NMR) phenomenon. As the human body is mostly composed of fat and water, con-

sisting of hydrogen atoms, the NMR signals from the nucleus of these hydrogen atoms
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can be recorded by applying an external magnetic field gradient and appropriate ra-

dio frequency (RF) pulse sequence to record k-space data, which is inverse fourier

transformed to construct an MRI image [13, 14].

The density of hydrogen atoms for fat, muscle, and other tissues are different,

hence rendering MRI as a powerful soft-tissue contrast imaging method. It is a

versatile modality, as different tissues can be highlighted in the images by changing

the acqusition parameters such as RF pulse sequence, repetation time (TR), and echo

time (TE). Similarly, the image slices can be acquired in any direction by changing

the external magnetic field gradients. Furthermore, with the faster acquisition of

images by exploiting the mathematical properties of the k-space, parallel acquisition

techniques, and the advent of new RF pulse sequences, it is possible to perform MRI

angiography, diffusion imaging, as well as functional imaging based on the blood

oxygen level dependent (BOLD) response.

MRI has been a popular modality for medical diagnosis due to the lack of ionizing

radiation and high contrast sensitivity to soft tissues. However, it is limited by slower

acquisition speed, high equipment and siting cost, operational complexity, significant

imaging artifacts, and MR safety concerns.

MRI is the preferred cardiac imaging modality due to its capability of tissue

characterization. Specifically, the steady state free precision (SSFP) pulse sequence

[15], which reduces the acquisition time while maintaining a good signal-to-noise ratio

as well as good blood-myocardium contrast, is coupled with electrocardiogram (ECG)

gating to produce movie of a heart slice throughout the cardiac cycle, known as cine

MRI acquisition. The short-axis cine MR slices covering the whole heart are stacked

together to generate a pseudo four-dimensional (4D) volume, which can be used to

perform quantitative analysis of cardiac indices [16]. However, since very few slices

are acquired due to higher acquisition time, and the slices might be misaligned due

to breathing/patient-motion, 3D analysis of cine MR images is challenging. In this

thesis, we use open-source cine MRI datasets for cardiac image segmentation.
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1.1.4 Ultrasound Imaging

Sound waves with frequencies above 20 kilohertz (KHz), the upper audible limit

of human hearing, are termed as ultrasound (US). US imaging devices constitute of

piezoelectric crystal-based transducer that produces the ultrasound beam (typically

1-15 megahertz (MHz)) as well as receive the returned echo from the tissue [17].

A-mode imaging is the simplest form of US imaging where the transducer transmits

US pulses through the patient body such that the time and amplitude of the received

echos provide the location information and the tissue structures and interfaces along

the path, respectively. Hence, a vector image with spatial dimension representing the

location and the intensity representing the amplitude of received echo is generated.

M-mode images are formed by arranging A-mode vector images, along a fixed US

beam at different time instances, in columns of a 2D matrix. These images are useful

to analyze moving objects inside the body.

B-Mode images are constructed by pivoting the transducer at a point about an

axis acquiring several A-mode vector images, along a V-shaped imaging region, and

combining them into a 2D matrix. This is the most commonly used imaging mode.

Real-time 3D US imaging is now possible using 2D array of transducer with beam-

forming electronic in the transducer handle. Similarly, doppler US can be used to

measure the flow velocities based on the shift of frequency in an ultrasound wave due

to blood/liquid flow. Furthermore, gas-filled encapsulated microbubbles can be used

as contrast agents to enhance the echo amplitudes and hence the image contrast.

Due to low-cost, portability, real-time, and ionizing-radiation-free acquisition, US

is used in various clinical applications such as breast, cardiac, gynecologic, obstetrics,

pediatrics, and vascular imaging. However, the images suffer from various artifacts

such as speckle noise due to the random alignment of sound waves reflected on mi-

croscopic tissue inhomogeneties, shadows casted behind a strong reflecting object,

multiple reflections between two strong reflectors displayed as multiple echos, and

mirroring when an object is placed between the transducer and a strongly reflecting

layer [6].

Cardiac US imaging is routinely used in clinics to evaluate the cardiac contractile
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functions, blood-flow measurement using doppler imaging, and myocardial deforma-

tion evaluation using strain imaging [18]. Transthoracic echocardiogram (TTE) is

the most common non-invasive assessment, where the heart is imaged by placing the

US probe on the chest or abdomen of the patient. However, the quality of acquired

image is low due to the signal attenuation by layer of fat and muscle on the US

path. Transesophageal echocardiography (TEE) produces better images by passing

a specialized probe containing an ultrasound transducer at its tip into the patient’s

esophagus and imaging the heart from close. Similarly, Intracardiac echocardiography

(ICE) performed through a venous or arterial sheath is able to produce high resolu-

tion images from within the heart without the need for general anesthesia. However,

it has limited field-of-view and high associated cost because of single-use catheters.

Hence, TEE is generally the preferred US protocol in the clinic. In this thesis, we use

the multi-plane TEE image sequences for LV segmentation and 3D reconstruction.

1.1.5 Nuclear Medicine Imaging

Nuclear medicine [19] refers to a branch of radiology where a patient is injected

with substances containing radioactive isotope such that the x- and/or gamma rays

emitted during radioactive decay detected by a radiation detector is used to make

projection images. The acquired multiple projection images are back projected to

reconstruct a tomographic slice, similar to CT imaging. It is a functional imaging

modality since it provides physiological information of imaged organs, as the emis-

sivity of a healthy tissue is different from a diseased one. Hence, the nuclear images

are usually coupled with the structural CT images to analyze both the structure and

function of organs.

Most popular nuclear medicine imaging techniques are SPECT and PET. In

SPECT, the tomographic images are reconstructed from the x- or gamma-ray emis-

sions from the patient detected by a nuclear camera at multiple angles around the

patient. In PET, the positron (e+) emitted during the decay of an isotope combines

with an electron (e−) to produce an annihilation radiation emitting two photons in

opposite directions; the detected photon pairs give information about a straight line
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along which the annihilation event took place and can be used to compute the 3D

distribution of the PET agent and hence generate a tomographic emission image.

PET is more sensitive to small physiological changes in tissues than SPECT at an

expense of higher imaging cost.

Typically the functional images acquired from SPECT and PET are combined

with structural CT images; SPECT-CT and PET-CT imaging are often used in car-

diology, oncology, neurology, and imaging of infection and inflammation.

1.2 Image Segmentation

Image segmentation refers to the grouping of pixels/voxels in an image based

on common properties such as intensity, color, texture, and location [20, 21]. The

segmentation task assigns a label to each pixel/voxel in an image based on its features.

Clinicians often require to delineate an organ, tumor, vessels, etc from the acquired

X-ray, MRI, CT, or US images for diagnostics, planning and guidance. Although the

manual delineation is referred to as the gold-standard, it is time intensive (specially

for 3D/4D images), and is prone to intra- and inter-observer variability. Hence, it is

often desirable to perform semi-/fully-automatic segmentation that can be manually

adjusted if desired.

Based on the amount of prior knowledge used, image segmentation algorithms

can be broadly classified into (i) No prior, (ii) Weak prior, (iii) Strong prior, and (iv)

Machine learning based methods.

1.2.1 No Prior Based Algorithms

These are the simplest kind of segmentation algorithms that do not use any prior

information about the shape/geometry of the object and rely only on the pixel/voxel

intensity information.
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1.2.1.1 Thresholding

Thresholding algorithms determine the intensity thresholds, T1 and T2, based

on the intensities of the input image, I(x), such that the foreground/background

separated binary image, S(x), can be obtained as:

S(x) =

 1 if T1 ≤ I(x) ≤ T2

0 otherwise
(1.2)

Otsu’s method [22] provides an optimal global threshold that minimizes the intra-class

intensity variance while maximizing the inter-class intensity variance for an image

with bi-modal histogram. Multi-level thresholding can be used to delineate multiple

foreground objects from the background. Similarly, adaptive thresholding based on

the local image statistics is preferred when the image statistics vary significantly in

different image regions, possibly due to imaging artifacts.

1.2.1.2 Edge Detection and Linking

Edges can be detected from an image using a discrete approximation of the deriva-

tive operator along each spatial dimension, based on the intensity differences between

the neighboring pixels. The first order derivative operator is approximated by sev-

eral discrete filters such as Roberts, Prewitt, and Sobel. Similarly, the second order

derivative operator is approximated by a discrete Laplacian filter.

Due to the high sensitivity of derivative operator to noise, usually the image is

smoothed by a Gaussian filter before edge detection. Laplacian of Gaussian (L0G)

filtering can produce fine edges based on zero-crossings. The obtained discontinuous

edges can be linked based on the proximity, edge strength, and edge direction, to

generate a continuous boundary. Canny edge detection [23] algorithm uses a multi-

stage pipeline to produce fine boundaries of the objects in an image. Similarly, Hough

transform [24] can be used to detect the geometric objects such as line, circle, and

ellipse from the edges.
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1.2.1.3 Region Growing

Region growing algorithm groups pixels or subregions into a larger region based on

a predefined criteria. The algorithm requires manual/automatic ”seed” points, such

that the neighboring pixels with features (intensity, texture) similar to the seed are

appended to grow the region. Region growing stops when no more neighboring pixels

satisfy the inclusion criteria, resulting in segmented image with multiple foreground

regions.

1.2.1.4 Morphological Watershed

In the morphological watershed algorithm [25], the images are interpreted as a

topographical map with image intensity representing an additional dimension. For

example, a 2D image can be viewed as a 3D topographical map with the third di-

mension representing the pixel intensity. The pixels with minimum intensity within

a topographical region are termed as regional minimum, which can be obtained via

image smoothing followed by local/global thresholding.

The basic principle of the watershed algorithm is to punch a hole in each regional

minimum and flood the entire topography by letting water rise through the holes at a

uniform rate. When the rising water in distinct catchment basins is about to merge, a

dam is built to prevent the merging. At the end of flooding, when only the top of the

dams are visible above the water line, the dam boundaries dividing the watersheds

corresponds to the continuous boundary between the segmented regions.

1.2.2 Weak Prior Based Algorithms

These algorithms pose segmentation as a global energy minimization problem in

an image, while imposing weak constraints such as piecewise continuity of segmented

regions, and smooth curvature of the segmented boundary. The use of global image

context and weak prior knowledge generates superior segmentation results compared

to the no prior based algorithms, at an expense of higher computation cost.
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1.2.2.1 Deformable Models

These models pose the segmentation problem as an energy minimization problem

in variational framework.

Active Contours or Snakes

Active contours are the parameterized spline curves that are evolved based on the

internal spline energy and the external image forces, to lock onto nearby edges of the

objects to be segmented in an image [26]. The snake is represented parametrically by

v(s) = (x(s), y(s)), where 0 ≤ s ≤ 1, with the total energy functional represented as

the sum of internal and external energy functionals:

E∗snake =

∫ 1

0

Eint(v(s)) + Eext(v(s)) (1.3)

Where the internal spline energy can be written as:

Eint(v(s)) =
1

2

(
α(s)|vs(s)|2 + β(s)|vss(s)|2

)
(1.4)

The first- and second-order terms control the amount of stretch and the amount of

curvature in the snake and are weighted by α(s) and β(s), respectively. The external

energy term, Eext(v(s)), is formulated as the weighted combination of the image in-

tensity, negative image gradient magnitude, and the curvature of level contours in the

original paper [26]. Starting with an initial curve selected manually/automatically,

the Euler equations corresponding to the energy functional of equation 1.3 are solved

iteratively until convergence to obtain the stationary point, yielding the final segmen-

tation result.

Due to the internal spline energy forces, the snake would collapse into a point or

a line (depending on if the curve is closed or open, respectively) if placed in a region

with uniform intensity. Cohen [27] proposed a modification to the external energy

to include a ”balloon” (pressure) force acting outward (or inward) in the normal

direction of the curve, allowing the curve to inflate (or deflate) and hence avoid the

collapse. The direction of the pressure force could be changed depending on the

requirement of expanding/shrinking the snake.
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The snake formulation still suffers from two major limitations: the curve has to

be initialized fairly close to the final solution due to the limited capture range of the

image gradient force, and the convergence to boundary concavities is poor. These

limitations were solved by the introduction of gradient vector flow (GVF) [28] as the

external energy term in the snake formulation. The GVF, computed as a diffusion

of the gradient vectors of a gray-level or binary edge map derived form the image,

increases the capture range of snakes as well as help them move into the boundary

concavities. Several modifications for the external energy term have been proposed

in the literature to further improve the performance of the snakes.

Level Sets

The level set framework [29] can handle topology changes during contour evolu-

tion, process multiple contours simultaneously, and allow cusps and corners, which

is not possible with the parametric representation of curve in active contour model.

The interface, dΩ, (a curve in 2D or a surface in 3D) is represented implicitly by

zero-contour of a higher dimension Lipschitz continuous function, φ, as dΩ(t) =

{x|φ(t,x) = 0}. In practice the signed distance function is chosen as the level-set

function:

φ(x) =


−d for x ∈ Ω−

+d for x ∈ Ω+

0 for x ∈ dΩ

(1.5)

where d is the Euclidian distance to dΩ. The evolution equation of the level set

function can be written as:

∂φ

∂t
+ F |∇φ| = 0, φ(0,x) = φ0(x) (1.6)

where, the function F is called the speed function and the set {x|φ0(x = 0)} defines

the initial interface. The level set function can be used to compute the normal to the

interface n and the interface’s mean curvature κ as:

n = ∇φ/|∇φ| and κ = ∇ · n
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For the motion by mean curvature, the speed function can be selected as F = κ.

Similarly, the speed function can be modified by a monotonously decreasing function

of the image gradient magnitude, g(|∇I0|), to stop the level set evolution on the

desired boundaries [30].

Since the level set function does not retain its signed distance function properties

as it evolves in time through equation 1.6, it needs to be reinitialized periodically after

every few iterations [31]. The reinitialization might move the level set incorrectly,

while increasing the computation cost. Hence, Li et al.[32] proposed a variational

framework that penalized the movement of level set away form the signed distance

function and did not require reinitialization during the evolution.

Caselles et al.[33] formulated the classical energy-based active contour model

(1.2.2.1) as a problem of finding a geodesic curve in a Riemannian space derived

from the image content; equivalent to finding a curve of minimal weighted length in

certain framework. This level set based geodesic active contour framework exploited

the connection between the classical energy-based model and the intrinsic level set

model. The geodesic formulation introduced a new term that further attracted the

deforming curve to the boundary and hence improved the convergence, while also

reducing the number of hyper-parameters.

The early active contour and level set formulations used image gradients as the

external force to determine the object boundaries, hence, they struggled with noisy

images and failed to segment objects with weak/smooth boundaries. Chan and

Vese [34] proposed a region-based segmentation model based on the minimization

of Mumford-Shah functional [35] for segmentation. The corresponding energy mini-

mization problem is equivalent to the minimal partition problem, and is solved via

level set evolution using finite difference approximation. Since the method does not

depend on image gradients, the energy landscape is smoother, resulting in better con-

vergence, even with poor initializations. Most recent level-set segmentation methods

employ both gradient- and region-based external energy terms to obtain more robust

segmentation results.
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1.2.2.2 Graph Theoretical Models

Graph theoretical models represent an image as a discrete graph and pose the

segmentation as a combinatorial graph partitioning problem. For a graph G = (V,E),

V = {v1, ..., vn} is a set of vertices representing the image elements (pixels/voxels/super-

pixels), and E is a set of edges connecting pairs of neighboring vertices. Each edge

(vi, vj) ∈ E is weighted by a weight w(vi, vj) based on the properties of the two ver-

tices connected by the edge, hence introducing weak constraint into the framework.

The image segmentation problem is formulated as a partitioning of the graph G into

mutually exclusive connected sub-graphs Gs = (Vs, Es), where Vs ⊆ V , Es ⊆ E, and

s = {1, 2, ..., k}, such that {Gi ∩ Gj = φ : i, j ∈ {1, 2, ...k}, i 6= j} and G =
k⋃
s=1

Gs.

Where the properties of vertices (intensity, texture, color, etc) within a sub-graph

should be similar, while that between different sub-graphs should be dissimilar.

The degree of dissimilarity between the subgraphs can be computed as a graph

cut. A cut partitions the graph into disjoint connected sub-graphs Ga and Gb and its

value is defined as:

cut(Ga, Gb) =
∑

va∈Ga,vb∈Gb

w(va, vb) (1.7)

which is the sum of weights of all the edges connecting Ga and Gb. Hence, image

segmentation is equivalent to finding the optimal cut in the graph. A comprehensive

survey of graph theoritical models for image segmentation can be found in [36]

Minimal spanning tree based methods

A spanning tree is an acyclic sub-graph (tree) including all vertices of the con-

nected graph, G, but with a single path between any two vertices. Out of multiple

spanning trees in a graph, the minimal spanning tree (MST) is the one with small-

est edge weights; it can be computed using several algorithms [37–39]. For example,

Kruskal’s algorithm [37] list all of the edges in ascending order and adds edge con-

nected to the MST with smallest weight, without generating any cycles. Next, if we

consider a binary image segmentation problem, the task is to find and remove a single

edge dividing the MST into two connected sub-graphs of descent sizes, such that the
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intra-class variance is minimized while the inter-class variance is maximized. In case

of multi-class labeling, multiple edges can be removed to obtain multiple connected

sub-graphs representing segmented regions. MST based image segmentation can be

found in several papers [40–42]

Shortest path based methods

Shortest path based methods obtain the segmentation boundary by finding the

shortest path between vertices in a weighted graph. Most of these methods rely on

manual input points to guide the segmentation boundary to the desired location.

Intelligent Scissors [43] framework allows objects in a digital image to be extracted

quickly and accurately using mouse gestures. An user starts tracing from a point and

as s/he move the cursor closer to the boundary of the object, the live-wire boundary

snaps to the object boundary. The live-wire boundary position is the shortest path

from the previous boundary point to the current cursor location computed using

optimal graph search (Dijkstra [44]) and dynamic programming in a 2D weighted

graph, with edge weights defined as the weighted combination of Laplacian zero-

crossing, gradient magnitude, and gradient direction. Similar algorithm based on

the user interaction using mouse cursor has been proposed in [45]. Furthermore, 3D

extensions of the shortest path based segmentation methods can be found in [46, 47].

Geodesic shortest path formulation computes the geodesic distance of each pixel to

the labeled forground or background pixels and assigns a label to the pixel depending

on the shortest geodesic path [48]. The geodesic paths are weighted according to the

image contents.

Random walk based methods

Random walk based methods represent an image as a graph with edge weights

proportional to the image gradients. An interactive multi-class segmentation of the

image can be obtained based on the seed points provided by an user, such that the

probability of a particular pixel assigned to class k is determined by the probability of

a random walker starting at that pixel first reaching the kth seed point. Hence, for each
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pixel a tuple of k probabilities are computed corresponding to k-classes, and the final

segmentation is obtained by assigning a pixel to the class with highest probability.

Grady [49] presented an algorithm to compute random walk probabilities by solving

a set of sparse linear systems, obtaining good segmentation results on synthetic and

real images.

Shen et al.[50] proposed a lazy random walk (LRW) algorithm [51] for superpixel

segmentation. Adding a self-loop over the graph vertex makes the random walk

process lazy and help make full use of the global relationship between the pixel and all

the seeds. A vertex with heavy self-loop is more likely to absorb its neighboring pixels

than the one with light self-loop, which enables the vertex to absorb and capture both

the weak boundary and texture information. Furthermore, since the LRW algorithm

computes the commute time from seed-point to other pixels, as opposed to starting

from the pixels to the seed-point in original random walk algorithm, it produces better

probability maps, hence generating excellent superpixel results.

Several modifications of random walk algorithm (sometimes in conjunction with

other methods) have been proposed for segmentation of various structures from med-

ical images [52–54].

Graph cut based on Spectral Clustering

Spectral clustering is a dimensionality reduction technique which uses specturm

(eigenvectors) of the graph similarity matrix for data clustering. It has an equvalent

interpretation as a graph cut and can be applied for image segmentation.

The weighted adjacency matrix of the undirected graph, G = (V,E), is the

symmetric n × n matrix W = w(vi, vj). The degree of a vertex vi ∈ V is di =∑n
j=1 w(vi, vj). The degree matrix D is defined as the diagonal matrix with the de-

grees d1, ..., dn on the diagonal. The unnormalized graph Laplacian matrix is defined

as L = D −W . If the partition of the graph is represented by x = [x1, ..., xn]T , such

that xi = 1 or − 1 if the vertex vi belongs to partition Ga or Gb, respectively, then
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the value of cut is given by:

cut(Ga, Gb) =
∑

va∈Ga,vb∈Gb

w(va, vb)

=
1

4

n∑
i,j=1

w(vi, vj)(xi − xj)2

=
1

2
xTLx

(1.8)

To avoid the trivial solution xi = 0, for all i, the following quadratic constraint is

imposed: xTx = n. If we relax the requirement on x such that it can be real valued,

the approximate solution to this constrained optimization problem can be obtained

from the real eigenvector of the Laplacian matrix L with smallest eigenvalue.

(D −W )x = λx (1.9)

However, the smallest eigenvalue (λ1) is 0, yielding the noninteresting solution x =

[1, ..., 1]. Therefore the second smallest eigenvalue (λ2) and the sign of the associated

eigenvector yields the optimal solution [55].

Since the minimum cut favors cutting small sets of isolated nodes in the graph,

several modifications have been proposed to maintain resonably large clusters. Ratio

cut [56] tries to optimize the following cost function:

RatioCut(Ga, Gb) =
cut(Ga, Gb)

|Ga|
+
cut(Ga, Gb)

|Gb|
(1.10)

where, |.| represents the number of vertices in the graph. To obtain the ratio cut, the

elements of eigenvector corresponding to λ2 are assigned to two clusters based on the

threshold that minimizes equation 1.10. Heuristically, the elements of the eigenvector,

xi ∈ IR, can be clustered into two groups using k-means clustering algorithm to

determine the cluster of each vertex [57] .

Shi and Malik [58] introduced the normalized cut cost function to improve the

balance between the cluster sizes after the graph cut:

Ncut(Ga, Gb) =
cut(Ga, Gb)

vol(Ga)
+
cut(Ga, Gb)

vol(Gb)
(1.11)



www.manaraa.com

17

where, vol(Ga) =
∑

i∈Ga,j∈Gw(vi, vj) is the total connection from vertices in Ga to

all vertices in the graph, vol(Gb) is defined similarly. The graph partition minimizing

equation 1.11 can be obtained by solving the eigenvalue problem

(D −W )x = λDx (1.12)

The eigenvector corresponding to λ2 can be used to bipartition the graph. Each

sub-graph can be further partitioned recursively if necessary.

Several objective functions for graph partitioning have been proposed to maximize

the inter-cluster similarity while minimizing the intra-cluster similarity [59, 60] to

improve the clustering performance.

Graph cut on Markov random field models

Undirected graphical model with markov properties, also known as Markov ran-

dom field (MRF), can encode the local spatial interaction between image pixels.

MRF allows probabilistic interpretation of image segmentation, where an image,

x = {x1, ...,xn}, has a random variable, xi, associated with each pixel. Each xi needs

to be assigned a label, L (foreground/background), during image segmentation.

The joint distribution of image label, x, can be written as a product of distri-

butions of maximal cliques. Where a clique refers to a subset of nodes in a graph

with an edge beween each node; maximal clique is a clique with maximum number of

nodes. Let C be a clique and xC be the set of variables in that clique, then the joint

distribution can be written as:

p(x) =
1

Z

∏
C

ψC(xC) (1.13)

where ψC(xC) is potential function of maximal clique C. Z is a normalizing constant

called the partition function and is given by:

Z =
∑
x

∏
C

ψC(xC) (1.14)

which ensures p(x) is a probability distribution. The potential functions are restricted

to be non negative, ψC(xC) ≥ 0, ensuring p(x) ≥ 0 (Hammersley and Clifford [61]).
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The potential functions can be expressed as Gibbs Distribution [62, 63]:

ψC(xC) = exp{−E(xC)} (1.15)

where E(xC) is the energy function of maximal clique xC . Hence, the joint distribution

defined as the product of clique potentials is equivalent to the Gibbs distribution of

the total energy, which is the sum of energies of all maximal cliques. The maximum

a posteriori (MAP) estimate of the joint distribution yields optimum labeling of the

image, which is equivalent to the minimum energy configuration (equation 1.15).

For a first order MRF, the total energy can be represented as:

E(f) =
∑
{p,q}∈N

Vp,q(fp, fq) +
∑
p∈P

Dp(fp), (1.16)

where the first term represents smoothness energy which enforces spatial smoothness

between pixels in a set of interacting pairs, N , and the second term represents the

data energy defined for each pixel based on its likelihood of being labeled fp.

Gemen and Geman [62, 63] first introduced the Bayesian image restoration us-

ing MRF image model. They used the Gaussian distribution likelihood and ising

model prior to obtain the posterior distribution in the Bayesian framework. The

MAP inference of the posterior distribution was performed by serial Gibbs sampling

with simulated annealing (SA) [64] schedule. Besag [65] later proposed MAP esti-

mation using Iterated Conditional Mode (ICM). ICM finds the mode for each node

conditioned on all the neighbors based on the current estimate of variables, and syn-

chronously updated the whole image repetadely until convergence. ICM can obtain a

local maxima significantly faster with no guarantee of global convergence, while SA

has a guaranteed global convergence provided a slow cooling schedule.

Greig et al.[66] discovered the minimum energy configuration of the MRF (corre-

spondingly the MAP) is equivalent to the minimum cut in the graph. Hence, they

computed the exact MAP estimate for a binary image restoration problem using the

Ford-Fulkerson algorithm [67], which states that the minimum cut in a graph can

be obtained from the maximum flow. Similarly, Wu and Leahy [68] performed data

clustering using the maxflow-mincut approach on a specially constructed graph, and

applied it on image segmentation.
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The traditional SA and ICM optimization algorithms are slow because they allow

small moves where only one pixel changes its label at a time. Boykov et al.[69]

proposed two algorithms based on graph cuts that efficiently find a local minimum

with respect to two types of large moves (large set of pixels changing labels) called

expansion and swap moves. These algorithms have strong convergence guarantee

within a known factor of the global minimum for two general classes of interaction

penalty V : metric and semimetric. V is called a metric on the space of labels L if it

satisfies:

V (α, β) = 0↔ α = β, (1.17a)

V (α, β) = V (β, α) ≥ 0, (1.17b)

V (α, β) ≤ V (α, γ) + V (γ, β) (1.17c)

for any labels α, β, γ ∈ L. If V satisfies only (1.17a) and (1.17b), it is called a

semimetric1. Later, Kolmogorov and Zabih [70] characterized the energy functions

that can be minimized by graph cuts and also provided respective graph construction

techniques. Recently, Krähenbühl and Koltun [71] proposed an efficient approximate

inference algorithm for fully connected conditional random field (CRF) model with

pairwise edge potentials defined by a linear combination of Gaussian kernels.

1.2.3 Strong Prior Based Algorithms

These algorithms constraint the solution space based on the training examples

and hence yield good segmentation results even with ill-defined or missing object

boundaries. However, the imposed constraints are very strict, causing the algorithms

to fail if the training set is not representative of the population.

1.2.3.1 Active shape and appearance models

The active shape model (ASM) learns the pattern of shape variability from the

training set of correctly annotated images, such that, the result of a segmentation

1For directed graphs, the convergence guarantee hold for V (α, β) 6= V (β, α)
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algorithm can be constrained to plausible solutions [72]. ASM can be generated as

follows:

• User marks multiple (n) corresponding landmarks, x = (x1, y1, ..., xn, yn)T ∈
IR2n, from N training examples.

• Align the training shapes by scaling, rotating, and translating, using Procrustes

method [73].

• Compute the mean shape, x, using

x =
1

N

N∑
i=1

xi (1.18)

• Compute the 2n× 2n covariance matrix S, using

S =
1

N

N∑
i=1

(xi − x)T (xi − x) (1.19)

• Perform eigen-decomposition of the covariance matrix, S, such that the columns

of matrix P represent the eigenvectors, and the diagonal elements of Λ represent

the eigenvalues (λi)

S = PΛP T (1.20)

• A shape in training set can now be approximated using the mean shape and

the weighted sum of k eigenvectors with largest eigenvalues, represented by a

2n× k matrix P k as:

x = x + P kb (1.21)

with the corresponding weight vector b = (b1, ..., bk)
T .

• New example shapes similar to those in training sets can now be generated by

varying the parameters, bi’s, within suitable limits. The parameters are linearly

independent, though there may be nonlinear dependencies still present. The

variance of bk over training set is λk (kth eigenvalue), hence the suitable limits

for plausible shapes lies within three standard deviations of the mean:

−3
√
λk ≤ bk ≤ 3

√
λk (1.22)



www.manaraa.com

21

The built ASM model can be used to constraint the evolution of the active contours

(1.2.2.1) after each contour update. The residual deformation, dx, obtained after

compensating for the translation, scale, and rotation of the model yields the parameter

update, db, as:

db = P T
k dx (1.23)

such that the model parameters can be updated as:

bt+1 ← bt + W bdb (1.24)

where, W b is a diagonal matrix of weights, which can be identity, or each weight

can be proportional to the variance of the corresponding shape parameter over the

training set, to allow rapid movement of parameters with higher variance. Further,

the shape parameters, bi’s, can be restricted withing three standard deviations as

in (1.22), to allow the evolved shape to be within a plausible range. Hence, the

final segmentation, consistent with the training shapes, can be obtained via iterative

updates upon convergence. The imposed shape constraint combined with the image

information overcomes the segmentation challenges with missing object boundaries.

An Active Appearance Model (AAM) extends the ASM to include gray-level ap-

pearance of the object of interest. The built statistical model of the shape and ap-

pearance is more robust, and can fit a test image even from poor starting estimates.

Model fitting refers to finding the model parameters to minimize the sum of squared

difference between the test image and the synthesized model. Since the gradient de-

scent optimization for model fitting requires expensive gradient computation in each

iteration, the original paper by Cootes et al.[74] learns the linear relationship between

model parameter displacements and the residual errors (between a training image and

a synthesized model example), such that, during model fitting, the current residual is

used to predict the model parameter displacements leading to a better fit. To speed

up the model fitting, several optimization algorithms have been proposed [75], includ-

ing warping the model to the test image via piecewise affine transformation [76] using

the inverse compositional image alignment [77] algorithm. A comprehensive review

of statistical shape models for 3D medical image segmentation can be found in [78].
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1.2.3.2 Atlas-based models

Atlas-based models solve the image segmentation problem via image registration.

In the context of cardiac image segmentation, an atlas is a cardiac US/MR image

coupled with the corresponding manual segmentation of the heart chambers. The

optimum transform, registering the atlas image to a test image, can be applied to the

atlas segmentation, to obtain the segmentation of the test image. Based on the num-

ber of atlases used, atlas-based models can be divided into — single- , probabilistic-

(average-), or multi-atlas based approach [79]. Atlas-based models have been exten-

sively used for medical image segmentation [80, 81].

Single-atlas model

In this model, a single segmented image with good resolution and contrast is

selected as an atlas. The atlas image is first registered to a test image via global

similarity/affine transform and the alignment is further refined using a deformable

transform. The obtained optimum transform (global+deformable) applied to the

atlas label yields the test image segmentation.

Due to the large variability in test images, usually a single atlas in not sufficient

to produce good results. Hence, multiple atlases can be registered to the test patient,

such that, the segmentation obtained from the best atlas is selected. The best atlas

can be chosen based on one of the two criteria — the atlas producing best similarity

metric after global (and optionally deformable) registration, or the atlas requiring

least deformation to register to the test patient.

Probabilistic atlas model

Multiple atlases can be registered to the same reference coordinate system, such

that, the pixel-wise average intensity (after normalization) and labels provide the aver-

age appearance of the anatomy and probabilistic-atlas, respectively. The probabilistic-

atlas represents the probability of each pixel belonging to a specific label in the ref-

erence coordinate system. Hence, the probabilistic-atlas for a specific group: gender,

age, ethnicity etc. can be generated to better represent the variability in that group.
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To segment a test image, the optimum transformation from the average appearance

image (in the reference coordinate system) to the intensity normalized test image is

obtained via registration, and hence the probabilistic-label is transferred. Further-

more, the transferred label can be used as a prior probability and combined with a

likelihood term in a Bayesian framework to obtain the maximum a posteriori (MAP)

probability of each pixel belonging to a specific label. This framework is attractive

as it is fast, requiring a single image registration step, while also incorporating the

variability in the multiple training atlases.

Multi-atlas model

The multi-atlas model registers multiple atlases to the test image, hence, trans-

ferring multiple labels. The label fusion step combines multiple labels to obtain the

test image segmentation. Various label fusion strategies have been proposed in the

literature [81, 82]. The simplest strategy is majority voting, where the label for each

pixel is assigned according to the most frequent label obtained from multiple atlases.

This strategy can be refined by assigning higher weights to the labels obtained form

atlases with higher similarity to the test image (after registration). Furthermore,

better segmentation performance can be obtained by weighting the atlases based on

local image similarity. As the image registration is prone to errors, multi-atlas model

is more robust compared to the single-/probabilistic-atlas models, at an expense of

increased computational cost.

1.2.4 Machine Learning Based Algorithms

Machine learning algorithms recognize a pattern in the data using statistical tech-

niques without being explicitly programmed. Supervised methods learn the mapping

from the image intensity to the labels using the training image and corresponding

segmentation, whereas the unsupervised methods try to find patterns in the image

intensities to group similar pixels in the same class.
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1.2.4.1 Unsupervised Methods

Unsupervised methods cluster the image pixels based on image features such as:

intensity, color, and texture. Provided the number of clusters k, the k-means cluster-

ing algorithm [83] assigns each pixel to a cluster by reducing the within-class variance.

Although attractive due to its simplicity, the k-means clustering algorithm assumes

similar sized spherical clusters, and performs hard clustering (each data is assigned

to a single class). The fuzzy c-means algorithm [84] extends k-means to produce soft

clustering by providing the membership of each data point to multiple clusters. Sim-

ilarly, the Gaussian mixture model (GMM) is a generalization of k-means algorithm,

which can model non-spherical clusters, with soft assignment of data to multiple

clusters. The Gaussian mixture model is estimated using the iterative Expectation-

Maximization algorithm [85].

In contrast to the above mentioned clustering algorithms, the mean shift algorithm

[86] does not require prior knowledge of the number of clusters, and does not constrain

the shape of the clusters. The mean shift algorithm creates a window around each

data point, finds the weighted mean of data within each window, shifts the window

to the mean, and repeat until convergence. The windows that end up near the same

peak/mode of the data density are merged and assigned to the same cluster. Hence,

a robust cluster of data is generated at an expense of higher computational cost.

When the pixel location is used alongside the image features for unsupervised

clustering, perceptually similar pixels can be grouped together to create super-pixels

[87]. The obtained over-segmentation can be used as a preprocessing step for the

subsequent image segmentation task.

1.2.4.2 Supervised Methods

Pixel-wise Classification

For pixel-wise classification, a set of features is extracted from each pixel, such

as: image intensities in the fixed neighborhood patch, color information, Gabor filter

output, image gradients, pixel location etc., and a discriminative model (Support

Vector Machine [88], Random Forest [89] or Neural Network classifier [90]) is trained



www.manaraa.com

25

on these pixel features to predict the corresponding labels [91–94]. These methods

do not encode the global context, as only the local image information is used for

label prediction, hence, producing noisy results. The obtained probabilistic result

can either be thresholded to yield the segmentation or can be incorporated as a prior

probability in a Bayesian framework to combine with a likelihood to produce a MAP

estimate.

Convolutional Neural Networks

Neural networks are machine learning models that loosely mimic the neural sys-

tem in the animal brain. The model is composed of hierarchical layers. Each layer

i consists of a weight matrix Wi applied to the input vector xi along with a bias

vector bi, typically passed through a non-linear activation function σ(·) to generate

an output vector xi+1 = σ(Wi · xi + bi). Hence, each layer learns the data represen-

tation at a higher, slightly more abstract level. Composing a large number of such

transformations enables the network to learn a very complex function

xn = F(x0) = σ(σ(Wn−1 · σ(Wn−2...σ(W1 · σ(W0 · x0 + b0) + b1)...+ bn−2) + bn−1)

transforming the input into a data representation suitable for a particular application

in hand. Specifically, Hornik [95] showed that standard multilayer feedforward net-

works with as few as a single hidden layer and arbitrary bounded and nonconstant

activation function are universal approximators, provided that sufficiently many hid-

den units are available. However, in practice, deep networks with multiple hidden

layers are preferred, as they are able to approximate complex functions with manage-

able number of hidden units, showing excellent performance in various applications

[96].

Although the first neural network was first proposed in 50’s and its first training

algorithm was proposed in 70’s, recent advances in computing power, availability

of large datasets, and discovery of new non-linear functions (Rectified Linear Unit

(ReLU)) overcoming the vanishing gradient problem, have led to resurgence of deeper,

more powerful neural networks in 2010’s, reintroduced as Deep Learning [96].
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Given a training input/output pair (I, O), the input I is passed through the

network F(·) to generate an output F(I). The network output is compared against

the reference output O to compute a loss L{F(I), O}, where the loss L{·, ·} computes

the dissimilarity between the two inputs. The goal of network training is to adjust

the network parameters Wi’s and bi’s, such that the loss L{F(I), O} is minimized.

The gradient of the loss with respect to the network output is computed and back-

propagated [97] (via chain-rule) to obtain the gradients with respect to each network

weight. Typically, the network weights are updated based on the gradients computed

for a random batch of training examples, performing a stochastic gradient descent

optimization [98]. The network is trained sufficiently long until the training loss

stabilizes. A separate validation dataset is appropriated to evaluate the generalization

performance of the network. The trained network yielding the lowest validation error

is used as the final model to test it on held-out test datasets.

Convolutional Neural Network (CNN) [99] is a special type of neural network de-

signed to discover spatially invariant patterns in the data. The weight matrix W is

smaller than the input data matrix, and is learned across the input data via a slid-

ing window operation called convolution. The parameter sharing across the spatial

locations help reduce the number of network parameters, leverage the spatial relation-

ship in the input data, and introduce spatial invariance [100]. Typically, a pooling

layer (e.g. max/average pooling) is used following several convolutions and non-linear

activations (e.g. ReLU), to introduce invariance to small translations, perform multi-

resolution analysis, as well as reduce the size of intermediate features, ultimately

reducing the computational complexity and memory footprint of the model.

The unique capability of CNNs to learn problem specific hierarchical features in

an end-to-end manner have established them as a powerful general purpose super-

vised machine learning tool that can be deployed for various computer vision problems

yielding state-of-the-art performance. CNNs [101] significantly improved image classi-

fication performance on a large scale visual recognition challenge (ImageNet challenge

[102]) with hundreds of object categories and millions of images. This success led to

its wide adoption in various other applications.

Although CNNs have shown incredible performance, these networks have been
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found to be vulnerable to small perturbations of the input, imperceptible to the hu-

mans, termed as adversarial inputs [103]. Similarly, in [104], CNN based classification

is reported to be sensitive to small image transformations (e.g. one pixel translation),

due to the violation of spatial-invariance properties of the convolution, as a result of

the sub-sampling (pooling) operations performed in the network. Furthermore, in

[105], for the CNN based object detectors, it has been shown that slight changes of

one object’s position in the image can impact the detection of all the other objects

present in the image. Nonetheless, CNN based methods produce excellent results

for various computer vision and natural language processing applications, rendering

them as the first choice methods for these applications.

In the context of image segmentation, Long et al.[106] proposed the first fully

convolutional network for semantic image segmentation, adapting the contemporary

classification networks fine-tuned for the segmentation task obtaining state-of-the-art

performance. This performance motivated the use of CNNs in medical image analysis.

However, their initial adoption in the medical domain was challenging, due to the

limited availability of medical imaging data and associated costly manual annotation.

These challenges were later circumvented by patch-based training, data augmentation,

and transfer learning techniques [107, 108]. Notably, the U-Net architecture [109] with

data augmentation has been very successful in medical image segmentation.

1.3 Cardiac Image Segmentation

World Health Organization (WHO) 2 facts estimated 17.9 million deaths from

cardiovascular diseases in 2016, representing 31% of all mortalities, rendering cardio-

vascular conditions the main cause of death globally. Hence, the timely diagnosis and

treatment follow-up of these pathologies is crucial. Cardiac diagnosis indices such as:

systolic and diastolic volume, ejection fraction, myocardial mass and thickness can be

computed by segmenting the heart chambers from the cardiac images. Furthermore,

high quality anatomical models can be generated and used for treatment planning and

2https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)



www.manaraa.com

28

image-guided interventions. Ultrasound and MRI are the two most common cardiac

imaging modalities.

1.3.1 Cardiac Ultrasound Segmentation

Over the past three decades, ultrasound (US) imaging has evolved as the preferred,

standard-of-care imaging modality for the diagnosis, screening, and monitoring of sev-

eral conditions. Specifically, thanks to its real-time capabilities, relatively inexpensive

cost (compared to other modalities), and lack of exposure to ionizing radiation, US

imaging has become the “first-line” modality for patient screening, diagnosis, and

cardiac function assessment.

While 2D US has been the clinical standard, developments in 3D image acqui-

sition and transducer design and technology have revolutionized echocardiography

imaging, enabling both real-time 3D trans-esophageal and intra-cardiac image acqui-

sition. However, in most cases the clinicians do not access the entire 3D image volume

when analyzing the data, but rather focus on several key views that render the car-

diac anatomy of interest during the US imaging exam, enabling image acquisition at

a much higher spatial and temporal resolution. Two such common approaches are

the bi-plane and tri-plane data acquisition protocols; as their name states, the former

comprises two orthogonal image views, while the latter depicts the cardiac anatomy

based on three co-axially intersecting views spaced at 60◦ to one another.

Trans-esophageal echocardiography (TEE) enables heart imaging while minimiz-

ing signal attenuation and optimizing field-of-view. As such, TEE is not only used

for screening and diagnosis, but also for intra-operative therapy monitoring and/or

image-guided cardiac interventions. Since the mid-2000s, TEE technology has ac-

commodated 3D image acquisition and visualization of the cardiac anatomy in lieu of

simple 2D renderings. However, despite the added bonus of 3D and 4D (3D + time)

displays, the inherent trade-off between frame rate, and extent of anatomy covered,

has determined clinicians to resort to the acquisition and visualization of multi-planar

(orthogonal bi-plane or tri-plane) images to estimate the required parameters to assess

cardiac function (i.e., ejection fraction) or identify critical features for image-guided
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therapy.

Since cardiac anatomy is continuously changing, the intra-operative anatomy de-

picted using real-time US imaging also needs to be updated by tracking the key

features of interest and endocardial LV boundaries. Therefore, near real-time feature

tracking in US images is critical for two reasons: 1) to identify location of surgical

targets for accurate tool to target navigation and on-target instrument positioning;

and 2) to enable pre- to intra-op image registration as a means to fuse pre-op CT or

MR images used during planning with intra-op images for enhanced guidance.

Several approaches for LV segmentation in echocardiography [110] have been pop-

ularly formulated as a contour finding problem, with the active contour method [111–

114] being extensively used. Given its edge-based energy approach, the active contour

method often produces many local minima and is sensitive to the initialization. In-

spired by the active contours, the level set method [115–118] uses both edge- and

region-based energy, making it more robust and less sensitive to initialization. Active

shape and active appearance models [78, 119] incorporate knowledge of the LV shape

and appearance from manually segmented training sets (assuming a Gaussian dis-

tribution of shape and appearance) into the snakes/levelset framework, hence, suffer

from the initialization issues and might be too restrictive in some cases (e.g. diseased

outlier cases). On the other hand, database-guided segmentation [120] overcome

the initialization problem by implicitly encoding prior knowledge from the expert-

annotated databases, yet at the expense of a highly complex search process. Other

supervised learning techniques, such as artificial neural networks , have been used

to detect endocardial border pixels using expert annotated training sets, but require

large training sets and are unable to handle cases well outside of the training set.

1.3.2 Cardiac MRI Segmentation

High image quality, good tissue contrast, and no ionizing radiation has estab-

lished MRI as a standard clinical modality for non-invasive assessment of cardiac

performance. Cardiac contractile function quantified via the systolic and diastolic

volumes, ejection fraction, and myocardial mass represents a reliable diagnostic value
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and can be computed by segmenting the left (LV) and right (RV) ventricles from car-

diac cine-MRI. Moreover, since the MR image acquisition technology has evolved to

the extent that it enables the acquisition of peri-operative (just in time) images of the

patient within the interventional suite moments before the procedure, reconstructed

high quality LV models depicting full cardiac morphology can be used to precisely lo-

calize pathologies during an image guided intervention. Although manual delineation

of the ventricle is deemed as the gold-standard approach, it requires significant time

and effort and is highly susceptible to inter- and intra-observer variability. These

limitations suggest a need for fast, robust, and accurate semi- or fully-automatic

segmentation algorithms.

Various segmentation techniques for cardiac MR images have been proposed in the

literature [121–123]. The image-based approaches with weak or no prior information

[124, 125], such as thresholding, edge-based and region-based approaches, or pixel-

based classifications methods, require user interaction for proper segmentation of the

ill-defined regions. On the other hand, shape prior deformation models [126], active

shape and appearance models [127–129], and atlas-based approaches [130–132] are

more likely to overcome this problem at the expense of manually building a training

set. While many methods focus on segmentation of a single ventricle, some methods

perform joint segmentation of both ventricles [126, 133–135], exploiting the geometry

information, relative position of ventricles, and similar intensity characteristic of blood

pool cavities.

Multi-atlas based approaches have shown promising results in biomedical image

segmentation [81]. However, they rely on a number of computationally demanding

and time limiting nonrigid image registration steps followed by label fusion. Hence

despite its accuracy, it has experienced minimal to no adoption in actual clinical ap-

plications primarily due to its complexity, high dependence on parameters variability,

and computational demands. On the other hand, combinatorial optimization based

graph-cut techniques [124] were also shown to serve as powerful tools for image seg-

mentation; these techniques are fast and guarantee convergence within a known factor

of the global minimum (in a binary labeling problem) for special class of functions

(i.e., regular functions) [70]. In an attempt to further refine these techniques, adding
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shape constraints to the graph cut framework has been shown to significantly improve

cardiac image segmentation results [127, 136, 137].

Convolutional neural network based methods have been the most popular methods

for image segmentation in recent years [106]. Convolution filters learned by the fully

convolutional network (FCN) [138] naturally encode the spatial relationship between

the pixels, as well as the relationship between various classes, producing piece-wise

smooth segmentation results. Training the network with a variety of healthy and

pathological MR images and corresponding manual segmentations, supplemented by

artificial data-augmentation (e.g. rotation, translation, non-rigid deformation), pro-

duces excellent segmentation results for a new patient within a fraction of seconds on

a Graphics Processing Unit (GPU). There have been attempts to leverage inter-slice

spatial dependencies between the 2D cine MR slices [139] and impose 3D anatomical

constraints [140] into the FCN framework. Furthermore, the output of the FCN is

used to initialize a deformable model in [141] to improve LV segmentation accuracy.

Several modifications to the FCN architecture and various post-processing schemes

have been proposed to improve the semantic segmentation results as summarized in

[142]. Nevertheless, the focus has primarily been on the LV segmentation and very

few works have been disseminated on the RV segmentation.

1.3.3 Clinical Indices Estimation

Clinical indices such as LV/RV blood-pool volume, LV myocardium area and

thickness, can either be computed from the corresponding segmentation or estimated

directly from the features extracted from a given US/MR image. In [143], the LV

volume for a new test patient is computed as the weighted combination of the LV

volumes of training patients, such that the weights are computed according to their

closeness to each of the LV in the training set, assessed using a specially designed

likelihood function. Further, they exploited the linear relationship between the LV

and RV volumes to obtain a better estimate of the RV volume.

Similarly, there have been attempts to train a machine learning model to predict

the LV and RV volumes based on the learned unsupervised representation of a test
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image [144]. Furthermore, other works [145, 146] regress the clinical indices directly

from a given image using convolutional neural networks. Nevertheless, the direct esti-

mation based methods are less interpretable, hence more challenging to troubleshoot

in case of erroneous results, than their segmentation based counterparts.

1.3.4 Segmentation and Clinical Index Evaluation

Overlap and surface distance measures provide synergistic information regarding

the accuracy of the obtained segmentation with respect to the reference segmentation.

Furthermore, the clinical indices associated with the obtained segmentation is also

evaluated against that computed from the reference.

1.3.4.1 Dice and Jaccard Coefficients

Given two binary segmentation masks, A and B, the Dice and Jaccard coefficient

are defined as:

Dice =
2|A ∩B|
|A|+ |B|

, Jaccard =
|A ∩B|
|A ∪B|

(1.25)

where, | · | gives the cardinality (i.e. the number of non-zero elements) of each set.

Maximum and minimum values (1.0 and 0.0, repectively) for Dice and Jaccard coeffi-

cient occur when there is 100% and 0% overlap between the two binary segmentation

masks, respectively.

However, these overlap measures are less sensitive when evaluated on large solid

objects (e.g. LV/RV blood-pool in mid-slice) compared to smaller objects (e.g.

LV/RV blood-pool in apical slices) and objects with complex shapes (e.g. myocardium

with a donut shape). Hence, we also evaluate the surface distances for comprehensive

segmentation evaluation.

1.3.4.2 Mean Surface Distance and Hausdorff Distance

Let, SA and SB, be surfaces (with NA and NB points, respectively) corresponding

to two binary segmentation masks, A and B, respectively. The mean surface distance
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(MSD) is defined as:

MSD =
1

2

(
1

NA

∑
p∈SA

d(p, SB) +
1

NB

∑
q∈SB

d(q, SA)

)
(1.26)

Similarly, Hausdorff Distance (HD) is defined as:

HD = max

(
max
p∈SA

d(p, SB),max
q∈SB

d(q, SA)

)
(1.27)

where,

d(p, S) = min
q∈S

d(p, q)

is the minimum Euclidean distance of point p from the points q ∈ S. Hence, MSD

computes the mean distance between the two surfaces, whereas, HD computes the

largest distance between the two surfaces, and is sensitive to outliers.

1.3.4.3 Ejection Fraction and Myocardial Mass

Ejection Fraction (EF) is an important cardiac parameter quantifying the cardiac

output. EF is defined as:

EF =
EDV− ESV

EDV
× 100% (1.28)

where, EDV is the end-diastolic volume, and ESV is the end-systolic volume. Simi-

larly, the myocardial mass can be computed from the myocardial volume as:

Myo-Mass = Myo-Volume (cm3)× 1.06 (gram/cm3) (1.29)

The correlation coefficients for the EF and myocardial mass computed from the

ground-truth versus those computed from the automatic segmentation is reported.

Correlation coefficient of +1 (−1) represents perfect positive (negative) linear rela-

tionship, whereas that of 0 represents no linear relationship between two variables.

1.3.4.4 Limits of Agreement

To compare the clinical indices computed from the ground-truth versus those ob-

tained from the automatic segmentation, we take the difference between each pair of
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the two observations. The mean of these differences is termed as bias, and the 95%

confidence interval, mean ±1.96×standard deviation (assuming a Gaussian distribu-

tion), is termed as limits of agreement (LoA).

1.4 Challenges in Cardiac Image Segmentation

1.4.1 Ultrasound Images

US images suffer from various artifacts due to the echo based image acquisition

procedure. Images contain characteristic granular texture due to the constructive

and destructive interference of sound waves scattered by microscopic tissue inhomo-

geneities, also termed as speckle noise. The image contrast is low due to similar

strength of echo received from different tissues. In addition, if regions with different

attenuation properties appear at the same depth, the image intensity within the same

tissue type appear inhomogeneous. These artifacts make the LV boarder indistinct

and sometimes misleading.

Signal dropout can occur due to backscatter (reflection of signals back to the

direction from which they came) if the ultrasound beam is parallel to the tissue

boundary. Similarly, the regions behind strongly reflecting objects do not produce

any echo due to the shadow artifact. This can lead to missing anatomical boundaries.

The cardiac motion and the deformation of LV boundaries, specially, fast motion

during the systolic phase poses a big challenge for segmentation. Furthermore, large

variations in appearance, configuration, and shape of the LV within the cardiac phase

and across patients creates additional challenges.

Despite the growing availability of 3D US imaging techniques, the wider field-of-

view comes at the expense of temporal resolution. Hence, clinicians prefer multi-plane

2D images of the heart, as their acquisition does not compromise the frame rate, which

is the case for 3D and 4D imaging. These multi-plane 2D images, typically consisting

of the 4-, 3- and 2-chamber views, are used to compute the LV-RV blood pool volumes

and ejection fraction, although these parameters are deemed not as reliable as those

computed from 3D imaging.
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1.4.2 MRI Images

The short-axis cine MR slices can be acquired throughout the cardiac cycle using

the SSFP sequence coupled with the echocardiogram (ECG) gating. Multiple short-

axis cine MR slices covering the whole heart are stacked together to generate a pseudo-

4D volume, thus, allowing analysis of cardiac functions throughout the cardiac cycle.

Although the SSFP pulse sequence makes blood-pool appear bright whereas the

myocardium darker, the intensity values don’t have a standardized physical mean-

ing as in X-Ray or CT (Hounsfield Unit) and can vary between different acquisi-

tions. Similarly, since the recorded slice signal is obtained from a volume with some

slice-thickness, a voxel can be a mixture of signals from several tissue types. This

phenomenon termed as the partial volume effect causes fuzziness in intensity, which

is further exacerbated due to the blood flow. Furthermore, the papillary muscles

and trabeculations inside the heart chambers have same intensity profile as the my-

ocardium and hence are difficult to distinguish. All of the mentioned artifacts causes

indistinct borders making the segmentation of heart chambers challenging.

Although LV remains close to the ring shape, the RV has a crescent shape, which

varies a lot across the apex-base axis. Hence, the segmentation of RV is more chal-

lenging than the LV. In addition, the thickness of the RV myocardium is small and

close to the MR image resolution, making the segmentation of the epicardial wall very

difficult.

In short-axis cine MR acquisition, typically 8-10 slices are acquired along the apex-

base axis across the heart. Hence the resolution in long-axis is very poor (around

10mm). Further, the respiration and patient motion during the acquisition results in

misaligned slices. This makes 3D processing of the acquired volumes difficult. Thus,

most of the existing algorithms treat the short-axis slices independently, resulting in

poor segmentation results in the basal and apical regions.
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1.5 Contributions of this Dissertation

1.5.1 Ultrasound Image Segmentation

Due to the inherent noise in ultrasound images, intensity based methods usually

perform sub-optimally. The local phase-based filter computes the image response

to even and odd quadrature filters at multiple scales, which are considered as the

real- and imaginary- components, respectively, therefore allowing the computation of

the magnitude and phase of local signals. The difference in response of the odd filter

compared to the even filter across different scales, normalized by the total magnitude,

provides a contrast invariant measure of local-phase asymmetry. Here we use the

local-phase asymmetry measure to detect the endocardium border, hence overcoming

the challenges of noisy ultrasound images.

We use the graph-cut framework to minimize the region-based energy with a

smoothness constraint. The Gaussian intensity-likelihood term for the foreground

and background regions overcome the issue of intensity inhomogeneity. Similarly, the

smoothness constraint forced by the graph neighborhood structure provide consistent

segmentation in the regions with missing anatomical boundaries.

Since the LV features and boundaries are more prominent in the end-diastole im-

ages, we first segment the LV from the end-diastole frame and subsequently propagate

the segmentation using non-rigid registration algorithm to overcome the difficulties

due to large deformation of LV boundaries. The LV anatomy is modeled as a two

compartment model consisting of muscle — linear elastic, isotropic, and incompress-

ible, and blood-pool , with prescribed smoothness constraints to allow rapid motion

of the endocardial contour.

Clinicians compute the cardiac contractile function for each view separately, as-

suming isotropy in 3D, such that, the final metric is the average of the indices from

tri-plane views. Hence, the computed indices do not represent the actual 3D geometry

of the LV. Here, we rearrange the segmentation from tri-plane views in their original

3D orientation (60◦ apart) and reconstruct the 3D LV geometry, therefore achieving

a more accurate and precise estimate of the cardiac indices.
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1.5.2 MRI Image Segmentation

To overcome the challenges with the non-standardized intensity values in the MR

images, as well as the fuzziness due to the partial volume effect and blood flow, we use

the Gaussian mixture model intensity likelihood for the foreground and background

regions in the Graph-cut framework. This regional energy term coupled with the

graph neighborhood smoothness constraints provide robustness against the intensity

fuzziness in MR images.

To overcome the segmentation difficulty due to the distinct shapes of LV and RV

and their variability across patients as well as along the apex-base axis, we incorporate

the average atlas based shape prior into the graph-cut framework. Furthermore, the

proposed iterative refinement procedure helps overcome the initial average atlas to

test patient registration error. This also allows the segmentation to be guided by

prominent image features, relaxing the atlas constraints, in case of diseased/outlier

test patients.

Due to the large slice-spacing and motion artifacts caused by breathing and patient

movements, the short-axis cine MRI slices are misaligned. Hence, most of the cine

MRI segmentation algorithms treat each slice separately to perform a 2D slice-wise

segmentation. Although 2D algorithms obtain good segmentation results in mid-

ventricular slices, there is limited information in the apical and basal regions, hence,

the segmentation results are poor in these regions. We realign the misaligned slices

based on the LV center information to generate a coherent 3D volume, and hence

utilize the 3D context during segmentation. This improves the segmentation results

in the problematic apical and basal slices.

Finally, we leverage the success of fully convolutional neural networks in the se-

mantic image segmentation task to perform end-to-end segmentation of the heart

chambers. We employ a multi-task learning network to segment the myocardium as

well as regress its area. Furthermore, we employ the multi-task learning framework

to impose a shape-constraint into a fully convolutional network, hence improving the

segmentation performance and the computed clinical indices, as well as, the gen-

eralization performance of the network when trained on a dataset acquired at one



www.manaraa.com

38

institution and tested on a dataset acquired at a different institution. We show that

our proposed network is able to produce excellent segmentation results (for LV blood-

pool, RV blood-pool, and LV myocardium) from the MR images of both normal and

pathological cases, while also improving the segmentation performance in the chal-

lenging apical and basal slices.

1.5.3 Clinical Indices Estimation

To evaluate the accuracy and precision of the clinical indices obtained from

segmentation-based and direct estimation-based methods, we trained a fully convo-

lutional network to segment the myocardium and regress its area, simultaneously.

We demonstrate that segmentation-based area estimate is significantly better than

that obtained from direct estimation. Furthermore, as the quality of the obtained

segmentation can be visually verified by the clinician, segmentation-based clinical in-

dex estimation is interpretable and more reliable, as opposed to that obtained from

direct estimation-based methods, hence showing better promise for clinical adoption.

However, it should be noted that it is easier to obtain the reference clinical index

for direct-estimation, compared to the reference per-pixel segmentation required for

segmentation-based method.

1.6 Dissertation Overview

The thesis chapters provide a detailed description of the proposed methods to

overcome the challenges with the segmentation of 2D, 3D, and 4D cardiac images

from Ultrasound and Cine MRI modalities. Chapters 2-4 employ traditional Atlas

and Graph-cut based segmentation techniques. In Chapter 5, we make a transition

towards CNN based approach by training it for slice mis-alignment correction and

extending previously developed method for full 3D segmentation. Finally, to leverage

the recent success of CNN based methods, we train a fully convolutional network on

large dataset in Chapters 6-7, obtaining highly accurate segmentation of the heart

chambers compared to the traditional segmentation approaches.
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Chapter 2

This chapter provides a detailed description of the left Ventricle segmentation from

tri-plane TEE image sequences. The proposed methodology encompasses three steps:

1) endocardial left ventricle (LV) feature extraction and blood-pool segmentation

from the raw 2D multi-plane image sequences, 2) frame-to-frame feature tracking

and propagation through the cardiac cycle using non-rigid image registration, and

3) 3D reconstruction of the LV blood pool geometry at the desired cardiac phases

using spline-based interpolation and convex hull fitting. The materials presented in

this chapter are adapted from the manuscripts published in 2015 in SPIE Medical

Imaging and Function Imaging and Modeling of the Heart (FIMH) in Springer’s

Lecture Notes in Computer Science series.

Chapter 3

This chapter provides a detailed description of the developed probabilistic atlas

prior based graph cut segmentation method. The proposed 2D segmentation methods

are applied for the segmentation of the left Ventricle from an open-source cardiac

cine MRI dataset with provided manual segmentation. The materials presented in

this chapter are adapted from a manuscript published in Springer’s Lecture Notes in

Computer Science as part of the 2016 MICCAI Workshop on Statistical Atlases and

Computational Models of the Heart (STACOM).

Chapter 4

The developed probabilistic atlas prior based graph cut segmentation method is

applied for the 2D segmentation of the right ventricle from an open-source cardiac

cine MRI dataset with provided manual segmentation. The materials presented in

this chapter are adapted from the work published in SPIE Medical Imaging 2017 and

Springer’s lecture Notes in Computer Science as part of the proceedings of the 2017

Functional Imaging and Modeling of the Heart conference.



www.manaraa.com

40

Chapter 5

This chapter provides a detailed description of the proposed convolutional neural

network (CNN) based method to predict the LV centers from 2D cine MRI images

and correct the slice-misalignment to create a coherent 3D volume. Finally, full 3D

graph-cut segmentation with probabilistic atlas shape prior yields the segmentation.

The materials presented in this chapter are adapted from a manuscript published in

the 2018 SPIE medical Imaging conference.

Chapter 6

This chapter provides a detailed description of a proposed multi-task learning

method used to segment the myocardium and regress its area, simultaneously. The

uncertainty of the two tasks are predicted by the network and used to weigh the

losses. Using this architecture, we not only show improvement in segmentation per-

formance, but also conclude that segmentation-based myocardium area estimate is

better than the area directly regressed by the network. The materials presented in

this chapter have been adapted from a manuscript on the same topic published in

Springer’s Lecture Notes in Computer Science as part of the 2018 MICCAI Workshop

on Statistical Atlases and Computational Models of the Heart.

Chapter 7

This chapter provides a detailed description of a proposed distance map regular-

ized fully convolutional network, featuring multi-task learning. The proposed method

is extensively evaluated on two open-source cardiac cine MRI datasets, demonstrat-

ing significant improvement in segmentation performance. The materials presented

in this chapter have been adapted from a manuscript published in Medical Physics.

Chapter 8

This chapter summarizes the contributions of this thesis in the field of cardiac

image segmentation from both clinical and algorithmic perspectives. Further, the
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proposed future work following this dissertation is provided.
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[30] Vicent Caselles, Francine Catté, Tomeu Coll, and Françoise Dibos. A geomet-
ric model for active contours in image processing. Numerische Mathematik,
66(1):1–31, Dec 1993.

[31] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for
computing solutions to incompressible two-phase flow. Journal of Computa-
tional Physics, 114(1):146 – 159, 1994.

[32] Chunming Li, Chenyang Xu, Changfeng Gui, and M. D. Fox. Level set evolu-
tion without re-initialization: a new variational formulation. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 430–436 vol. 1, June 2005.

[33] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours.
International Journal of Computer Vision, 22(1):61–79, Feb 1997.

[34] T. F. Chan and L. A. Vese. Active contours without edges. IEEE Transactions
on Image Processing, 10(2):266–277, Feb 2001.

[35] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth
functions and associated variational problems. Communications on Pure and
Applied Mathematics, 42(5):577–685, July 1989.

[36] Bo Peng, Lei Zhang, and David Zhang. A survey of graph theoretical approaches
to image segmentation. Pattern Recognition, 46(3):1020 – 1038, 2013.

[37] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the trav-
eling salesman problem. Proceedings of the American Mathematical Society,
7(1):48–50, 1956.

[38] R. C. Prim. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 36(6):1389–1401, Nov 1957.

[39] E.W. Dijkstra. Some theorems on spanning subtrees of a graph. Proceedings of
the Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathe-
matical Sciences, 63(2):196–199, 1960.



www.manaraa.com

45

[40] Ying Xu and Edward C. Uberbacher. 2d image segmentation using minimum
spanning trees. Image and Vision Computing, 15(1):47 – 57, 1997.

[41] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision, 59(2):167–181, Sep
2004.

[42] Ali Saglam and Nurdan Akhan Baykan. Sequential image segmentation based
on minimum spanning tree representation. Pattern Recognition Letters, 87:155
– 162, 2017. Advances in Graph-based Pattern Recognition.

[43] Eric N. Mortensen and William A. Barrett. Intelligent scissors for image com-
position. In Proceedings of the 22Nd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’95, pages 191–198, New York, NY,
USA, 1995. ACM.

[44] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer.
Math., 1(1):269–271, December 1959.

[45] Alexandre X. Falco, Jayaram K. Udupa, Supun Samarasekera, Shoba Sharma,
Bruce Elliot Hirsch, and Roberto de A. Lotufo. User-steered image segmentation
paradigms: Live wire and live lane. Graphical Models and Image Processing,
60(4):233 – 260, 1998.

[46] Ghassan Hamarneh, Johnson Yang, Chris McIntosh, and Morgan Langille. 3d
live-wire-based semi-automatic segmentation of medical images. In Medical
Imaging 2005: Image Processing, volume 5747, pages 1597–1604. International
Society for Optics and Photonics, 2005.

[47] L. Grady. Minimal surfaces extend shortest path segmentation methods to 3d.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2):321–
334, Feb 2010.

[48] X. Bai and G. Sapiro. A geodesic framework for fast interactive image and
video segmentation and matting. In 2007 IEEE 11th International Conference
on Computer Vision, pages 1–8, Oct 2007.

[49] Leo Grady. Random walks for image segmentation. IEEE Transactions on
Pattern Analysis & Machine Intelligence, (11):1768–1783, 2006.

[50] J. Shen, Y. Du, W. Wang, and X. Li. Lazy random walks for superpixel seg-
mentation. IEEE Transactions on Image Processing, 23(4):1451–1462, April
2014.



www.manaraa.com

46

[51] David Aldous and James Allen Fill. Reversible markov chains and random
walks on graphs, 2002. Unfinished monograph, recompiled 2014, available at
http://www.stat.berkeley.edu/$\sim$aldous/RWG/book.html.

[52] W. Ju, D. Xiang, B. Zhang, L. Wang, I. Kopriva, and X. Chen. Random
walk and graph cut for co-segmentation of lung tumor on pet-ct images. IEEE
Transactions on Image Processing, 24(12):5854–5867, Dec 2015.

[53] Abouzar Eslami, Athanasios Karamalis, Amin Katouzian, and Nassir Navab.
Segmentation by retrieval with guided random walks: Application to left ven-
tricle segmentation in mri. Medical Image Analysis, 17(2):236 – 253, 2013.

[54] Vasileios G. Kanas, Evangelia I. Zacharaki, Christos Davatzikos, Kyriakos N.
Sgarbas, and Vasileios Megalooikonomou. A low cost approach for brain tumor
segmentation based on intensity modeling and 3d random walker. Biomedical
Signal Processing and Control, 22:19 – 30, 2015.

[55] Kenneth M. Hall. An r-dimensional quadratic placement algorithm. Manage-
ment Science, 17(3):219–229, 1970.

[56] L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning
and clustering. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 11(9):1074–1085, Sep 1992.

[57] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, Dec 2007.

[58] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 22(8):888–905, August 2000.

[59] C. H. Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and H. D. Simon. A min-
max cut algorithm for graph partitioning and data clustering. In Proceedings
2001 IEEE International Conference on Data Mining, pages 107–114, 2001.

[60] Mari C.V. Nascimento and Andr C.P.L.F. de Carvalho. Spectral methods
for graph clustering a survey. European Journal of Operational Research,
211(2):221 – 231, 2011.

[61] J. M. Hammersley and P. E. Clifford. Markov random fields on finite graphs
and lattices. Unpublished manuscript, 1971.

[62] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721–741, Nov 1984.



www.manaraa.com

47

[63] Stuart Geman and Christine Graffigne. Markov random field image models
and their applications to computer vision. In Proceedings of the international
congress of mathematicians, volume 1, page 2, 1986.

[64] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[65] Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society. Series B (Methodological), 48(3):259–302, 1986.

[66] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society. Series B
(Methodological), 51(2):271–279, 1989.

[67] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8(3):399–404, 1956.

[68] Z. Wu and R. Leahy. An optimal graph theoretic approach to data cluster-
ing: theory and its application to image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 15(11):1101–1113, Nov 1993.

[69] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, Nov 2001.

[70] V. Kolmogorov and R. Zabih. What energy functions can be minimized via
graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2):147–159, Feb 2004.
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Chapter 2

Left Ventricle Segmentation,

Tracking, and 3D Reconstruction

from Multi-plane 2D TEE Image

Sequences

Multi-plane 2D TEE 1 images constitute the clinical standard of care for assess-

ment of left ventricle function, as well as for guiding various minimally invasive

procedure that rely on intra-operative imaging for real-time visualization. We pro-

pose a framework that enables automatic, rapid and accurate endocardial left ventri-

cle feature identification and blood-pool segmentation using a combination of image

filtering, graph cut, non-rigid registration-based motion extraction, and 3D LV ge-

ometry reconstruction techniques applied to the TEE image series. We evaluate our

1This chapter is adapted from:
Dangi S. et al., ”Endocardial left ventricle feature tracking and reconstruction from tri-plane trans-
esophageal echocardiography data,” Proc. SPIE 9415, Medical Imaging 2015: Image-Guided Proce-
dures, Robotic Interventions, and Modeling, 941505 (18 March 2015)
Dangi S. et al., ”Automatic LV Feature Detection and Blood-Pool Tracking from Multi-plane TEE
Time Series”. In: van Assen H., Bovendeerd P., Delhaas T. (eds) Functional Imaging and Modeling
of the Heart. FIMH 2015. Lecture Notes in Computer Science, vol 9126. Springer, Cham
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proposed framework using several retrospective patient tri-plane TEE image sequences

and demonstrate comparable results to those achieved by expert manual segmentation

using clinical software.

2.1 Introduction

While 2D US has been the clinical standard for over two decades, developments

in 3D image acquisition and transducer design and technology have revolutionized

echocardiography imaging, enabling both real-time 3D trans-esophageal and intra-

cardiac image acquisition. However, in most cases the clinicians do not access the

entire 3D image volume when analyzing the data, but rather focus on several key

views that render the cardiac anatomy of interest during the US imaging exam, en-

abling image acquisition at a much higher spatial and temporal resolution. Two such

common approaches are the bi-plane and tri-plane data acquisition protocols; as their

name states, the former comprises two orthogonal image views, while the latter de-

picts the cardiac anatomy based on three co-axially intersecting views spaced at 60◦

to one another. But since the LV is a 3D structure, there is a critical need for analysis

tools that are automated (to remove used bias and variability) to reconstruct the 3D

geometry from 2D time sequence images, and characterize its parameters throughout

the cardiac cycle. The cardiac parameters such as systolic and diastolic volumes and

ejection fraction, constitute critical clinical biomarkers, and are currently traditionally

assessed from 2D views following manual annotation.

In this work we propose the implementation and clinical validation of an auto-

matic workflow that encompasses well-evaluated filtering, segmentation, registration,

and volume reconstruction techniques as a means to provide a rapid, robust and ac-

curate framework for feature tracking from multi-plane ultrasound image sequences.

The proposed computational framework was developed in close collaboration with our

echocardiography colleagues, motivated by the need to reduce user-dependent and
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user-induced bias and reduce the uncertainty associated with the process of man-

ually identifying features from US image sequences. The impact and contribution

of the proposed work is the integration of several image processing techniques (i.e.,

phase-based filtering, segmentation, registration and volume reconstruction) into a

streamlined workflow that utilizes traditional standard of care images and fits seam-

lessly within the current workflows associated with both cardiac function assessment

and intra-operative cardiac intervention guidance and monitoring. The accuracy of

the proposed workflow is assessed against gold-standard results from the GE Echopac

PC clinical software.

2.2 Methodology

Speckle noise and signal dropouts inherent in US images render intensity based

approaches unreliable; rather, local-phase based approaches [1], theoretically invariant

to the intensity magnitude, have been preferred for detecting endocardium. Here we

exploit the robustness of phase-based feature detection and combine it with the power

of graph cut-based techniques [2] that use both region and boundary regularization,

to obtain a rapid, automatic piecewise smooth segmentation of the LV blood pool and

muscle regions. In addition, we conducted a study using retrospective clinical patient

data consisting of tri-plane (60◦ to one another) TEE image sequences through the

cardiac cycle to validate the proposed tools and demonstrate their clinical utility and

performance against commercial, clinical-grade, clinician-operated software.

The proposed methodology encompasses three steps: 1) endocardial left ventricle

(LV) feature extraction and blood-pool segmentation from the raw 2D multi-plane

image sequences, 2) frame-to-frame feature tracking and propagation through the

cardiac cycle using non-rigid image registration, and 3) 3D reconstruction of the LV

blood pool geometry at the desired cardiac phases using spline-based interpolation

and convex hull fitting.
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2.2.1 LV Feature Extraction and Blood-pool Segmentation

Although expert manual segmentation is deemed as gold-standard, the specular

noise specific to all US images gives rise to significant uncertainty when extracting

features of interest, highly dependent on the expert’s experience and expertise. To

improve consistency, we propose the use an automatic filtering and feature extraction

technique that identifies the blood-pool and tissue regions from 2D US images using

a two-step process.

2.2.1.1 Image Preprocessing via Monogenic Filtering

Intensity-based edge detection algorithms are inefficient in identifying features

from US images, whereas the intensity invariant local phase-based techniques have

shown promising results [1], where a local phase of ±π/2 signifies high symmetry,

while a local phase of 0 or π signifies high asymmetry [3]. The local phase computa-

tion of a 1D signal uses a complex analytic signal comprised of the original signal as

the real part and its corresponding Hilbert transform as the imaginary part. However,

since the Hilbert transform is mathematically restricted to 1D with no straightforward

extension to 2D and 3D, we used the method described in [4] to extend the concept of

the analytic signal to higher dimensions using a monogenic signal. The higher dimen-

sion monogenic signal is generated by combining a bandpass Gaussian-derivative filter

with a vector-valued odd filter (i.e., a Reisz filter). The low frequency variations in the

local phase are extracted using a high spread (σ) Gaussian-derivative filter, while the

high frequency components are extracted using a low spread (σ) Gaussian-derivative

filter.

The first step in our workflow is to highlight low frequency variation in local

phase of the 2D+T image volume, by computing feature asymmetry measure from

the monogenic signals generated using bandpass filter with low center frequency. Since

the innermost step edges represent blood pool (BP) region with very high confidence,
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Figure 2.1: Segmentation Workflow: a) original US image, (b) high spread (σ) low
frequency monogenic filter applied to the “2D + time” image dataset shown with the
high confidence blood pool mask, (c) low spread (σ) high frequency monogenic filter
output with blood pool removed, (d) “cartoon” image with enhanced regions, and (e)
graph cut segmentation output (f) superimposed onto the original image.

we obtain these innermost points by switching to polar coordinates and hence generate

a BP mask (Fig. 2.1b) using spline interpolation [5].

2.2.1.2 Image Smoothing

We perform frame averaging to reduce the noise present in the US image se-

quence. We then obtain the high frequency variations (edges) in the local phase of

the frame-averaged 2D image ROI by applying the monogenic filter with high center

frequency. The edges obtained within the high confidence BP mask are removed for

better smoothing of the BP region (Fig. 2.1c). For each row and column, we replace
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the intensity of the pixels between two edge pixels by their local mean, and combine

them to obtain an edge-preserved smooth image, which we refer to as a ”cartoon

image” (Fig. 2.1d).

2.2.1.3 Graph Cut Segmentation of End-Diastole Image

The resulting “cartoon” image is used to construct a four neighborhood graph

structure in which each pixel is connected to its east, west, north and south neighbors.

Three special nodes called terminals are added, which represent three classes (labels):

background, blood pool, and myocardium. The segmentation can be formulated as

an energy minimization problem to find the labeling f , such that it minimizes the

energy:

E(f) =
∑
{p,q}∈N

Vp,q(fp, fq) +
∑
p∈P

Dp(fp), (2.1)

where the first term represents the smoothness energy which forces pixels p and q,

defined by the set of interacting pair of pixels N , towards same label, and the second

term represents the data energy that reduces the disagreement between the labeling

f and the observed data.

The links between each pixel and the terminals (i.e., t-links) are formulated as the

negative logarithm of the normal distribution:

Dp(fp) = −ln
(

1

σ
√

2π
exp

(
−(ip − µ)2

2σ2

))
, (2.2)

where ip is the pixel intensity, and µ and σ are the mean and standard deviation (SD)

of pixel intensities for different classes, respectively. Since the background region is

mostly dark, the intensity mean and SD for the background region are empirically

selected as 0 and 0.01, respectively, whereas that for the BP and muscle regions are

computed using the BP mask obtained from the monogenic filter output.

The links between neighboring pixels, called n-links, are weighted according to
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their intensity similarity to formulate the smoothness energy:

Vp,q(fp, fq) =

2K · T (fp 6= fq) if |Ip − Iq| ≤ C

K · T (fp 6= fq) if |Ip − Iq| > C

(2.3)

where T (·) is 1 if its argument is true, and otherwise 0, K is a constant, and C is

a intensity threshold that forces the neighboring pixels within the threshold towards

the same label.

A cut in a graph separates the vertices such that they are left connected with a

single terminal. Cut cost equals the sum of edge weights through the cut. Minimum

cut is defined as the cheapest cut among all cuts, which can be found by computing

the maximum flow between the terminals. The corresponding labeling minimizes the

overall energy of the graph. We use the expansion algorithm [2] to find the minimum

cut yielding the optimal segmentation of background, blood-pool, and myocardium

(Fig. 2.1e).

2.2.2 Frame-to-frame Feature Tracking and Propagation

2.2.2.1 Image Preprocessing

Once the end-diastole image is segmented using the procedure outlined in 2.2.1,

the extracted features are tracked and propagated throughout the cardiac cycle using

non-rigid registration. Prior to registration, a region of interest spanning the entire

LV including blood-pool, myocardium, and surrounding region is obtained as the

dilated convex hull of the BP mask (Fig. 2.2b). Moreover, the mitral valve region

of the BP segmentation is “trimmed” using a straight line joining the leaflet hinges

(Fig. 2.1e).

2.2.2.2 Non-rigid Registration Algorithm

The employed registration algorithm is a modified version of the biomechanics-

based algorithm proposed by Lamash et al.[6], adapted to operate on 2D rather than
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Figure 2.2: Registration workflow: a) the original image is “prepared” by automat-
ically identifying an LV-centered ROI (b) onto which the mesh is applied (c), then
registered to the target image (d); the resulting displacement field (e) is applied to the
pre-registered image (b) to obtain the registered image (f), which can be compared
to the target image (d) by visualizing the digitally subtracted image (g).

3D images. The LV anatomy is modeled as a two compartment model consisting of

muscle — linear elastic, isotropic, and incompressible, and blood-pool, with prescribed

smoothness constraints to allow rapid motion of the endocardial contour.

We initialize the algorithm by first discretizing the endocardial and epicardial

contours, then constructing a mesh of the blood-pool and myocardium (Fig. 2.2c).

Rather than resorting to a rectangular grid, we account for the local curvature of the

endocardial border using a finite-element like mesh defined via linear shape functions.

The algorithm deforms the mesh by estimating the required deforming forces that

minimize the sum of the squared difference between the initial and target images.

To avoid large deformations and ensure a smooth displacement field, a linear elastic

regularization approach [7] is utilized.
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Figure 2.3: The frame-to-frame motion transforms (T(k−1)→k) are estimated by non-
rigidly registering adjacent images in the sequence, then concatenated (T1→k = T1→2

· . . . · T(k−1)→k) and applied to the segmented end-diastolic (ED) frame (Fk = T1→k ·
F1 = T(k−1)→k · . . . · T1→2 · F1).

The frame-to-frame displacement field T(k−1)→k is estimated by non-rigidly reg-

istering adjacent images in the cardiac cycle. The computed transforms are then

concatenated (T1→k = T1→2 · T2→3 · . . . · T(k−1)→k) and applied in reverse order to the

segmented end-diastole frame (Fk = T1→k · F1 = T(k−1)→k · . . . · T2→3 · T1→2 · F1),

enabling feature propagation through the cardiac cycle (Fig. 2.3). This frame-to-

frame registration procedure allows us to use the most reliable (and easy to accurately

segment) end-diastole frame as an anchor and propagate the segmentation via small

deformations at a lower computational cost, compared to the group-wise registration

of the frames performed using computationally expensive single joint optimization.
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2.2.3 3D LV Volume Reconstruction

Following the segmentation of each of the tri-plane views at end-diastole using

the technique in 2.2.1 and their propagation throughout the cardiac cycle using the

registration technique in 2.2.2, the resulting images are re-inserted into a pseudo-

3D image volume along the same orientation at which they were originally acquired

(i.e., 60◦ apart) corresponding to each cardiac phase. The boundary points of each

segmented contour at the same elevation are then fitted using the parametric varia-

tional cubic spline technique in [5]. The spline interpolated data is used to generate

a convex hull using the algorithm proposed in [8]. The schematic illustration of the

3D LV reconstruction is shown in Fig. 2.4.

Figure 2.4: Schematic illustration of the 3D LV reconstruction: the tri-plane views
at 60◦ (a) are inserted at their appropriate orientation (b), followed by spline inter-
polation and convex hull generation (c).

2.3 Evaluation and Results

We conducted a study using retrospective tri-plane time series data spanning mul-

tiple cardiac cycles from patients who underwent TEE imaging for cardiac function

assessment. Since the proposed framework encompasses three different components
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Figure 2.5: Manual segmentation of the LV performed by an expert cardiologist. Each
figure consists of three views from the tri-plane TEE acquisition at: (a) mid-diastole,
(b) end-systole and (c) end-diastole phases. The quantitative measurements of the
three views calculated by the GE EchoPac PC commercial software can be seen in
the table for each figure, the order being 1,2 and 3 for top-left, top-right and bottom-
left panels, respectively. Also shown is the 3D orientation of the three views in the
bottom-right of each image.

— automatic extraction of endocardial features, registration-based feature tracking

and propagation, and volume reconstruction — we assessed the performance of each

component against the ground truth, which consists of the blood-pool representation

annotated manually by the expert clinician, using the EchpPac PC clinical software

(Fig. 2.5). In addition, we also evaluated the performance at each stages of our

application running in MATLAB on an Intel R© Xenon R© 3.60 GHz 32GB RAM PC.

Table 2.1: Comparison between the blood-pool area measurements (Mean ± Std.
Dev. [cm2]) annotated by the expert (Ground Truth) and the area obtained via A
— automatic feature detection from individual frames; B — single phase automated
feature detection + registration-based propagation; and C — single phase expert
manual annotation + registration-based propagation. Measurements are evaluated
at two cardiac phases —- end-diastole (ED) and end-systole (ES) — and averaged
across all views and cardiac cycles spanned by the acquired data.

Blood-pool Area [cm2] vs. Method ED ES

Ground Truth: Multi Phase Expert Manual Seg 52.1 ± 3.2 50.4 ± 4.6
Method A: Multi Phase Auto Seg 51.2 ± 3.5 48.9 ± 4.3

Method B: Single Phase Auto Seg + Reg 50.1 ± 4.0 48.3 ± 4.6
Method C: single Phase Manual Expert Seg + Reg 49.8 ± 4.6 48.2 ± 5.1
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2.3.1 Automatic Direct Frame LV Segmentation Evaluation

We first evaluated the accuracy of our automatic, direct frame endocardial feature

extraction component against expert manual annotation of the same features from the

same frames performed by a cardiologist using the GE EchoPac PC clinical software.

Table 2.1 summarizes the blood-pool area measurements annotated by the expert

(Ground Truth) and the area obtained via A — automatic feature detection from

individual frames; B — single phase automated feature detection + registration-based

propagation; and C — single phase expert manual annotation + registration-based

propagation. Measurements are evaluated at two cardiac phases — end-diastole (ED)

and end-systole (ES) — and averaged across all views and multiple cardiac cycles

spanned by the acquired sequences. Our automatic blood-pool extraction technique

required 26.5s to segment a “2D + time” 15 frame TEE tri-plane sequence.

Table 2.2: Mean± Std. Dev. of several metrics — Dice Coefficient [%], Hausdorff Dis-
tance [mm], Mean Absolute Distance (MAD) Error [mm], and Endocardial TRE [mm]
— used to compare the expert clinicians’ blood-pool annotations (Ground Truth) with
the blood-pool annotation obtained via A — automatic feature detection from indi-
vidual frames; B — single phase automated feature detection + registration-based
propagation; and C — single phase expert manual annotation + registration-based
propagation. Measurements are evaluated at two cardiac phases — end-diastole (ED)
and end-systole (ES).

Comparison Expert vs. A Expert vs. B Expert vs. C
Metrics ED ES ED ES ED ES

DICE Coeff [%] 94.9±0.7 94.7±1.4 93.8±0.9 94.6±1.0 95.1±1.0 95.2±1.8
Haussdorf Dist [mm] 4.7±0.9 5.2±1.3 7.9±3.5 5.9±1.3 6.4±1.7 5.4±2.1

MAD Error [mm] 1.5±0.3 1.6±0.6 1.9±0.4 1.7±0.5 1.7±0.2 1.8±0.7
Endocardial TRE [mm] 1.9±0.2 2.0±0.7 2.6±0.7 2.1±0.5 2.2±0.2 2.2±0.8

2.3.2 Registration-based Blood-pool Propagation Evaluation

To evaluate the accuracy with which the non-rigid registration algorithm propa-

gates the extracted features throughout the cardiac cycle, we employed several met-
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rics, including the Dice correlation, Hausdorff distance, mean absolute distance error

and endocardial target registration error (TRE) computed between the ground truth

blood-pool manually annotated by the expert and the blood-pool depicted via three

other methods under consideration, as shown in Table 2.2.

Fig. 2.6 visually compares the ground truth blood-pool annotation performed by

the expert clinician to that extracted via direct frame feature identification, as well

as registration-based propagation of the single-frame blood-pool annotated either

manually by the expert or automatically using the first component of our proposed

framework. The segmentation propagation technique required 162s to run through a

15 frame tri-plane TEE sequence.

2.3.3 3D Volume Reconstruction Evaluation

Lastly, we assessed the accuracy of the 3D LV reconstruction procedure by com-

paring the reconstructed LV volume to that estimated by the GE EchoPac PC clinical

software following expert manual segmentation. The end-diastolic and systolic volume

measurements are summarized in Table 2.3, along with the corresponding ejection

fraction measurements. Performance-wise, the LV volume reconstruction from a tri-

plane sequence requires 11.6s.

Table 2.3: Comparison between the LV blood-pool volume and Ejection Fraction
(EF) between expert manual annotations (Ground Truth) and A — automatic feature
detection from individual frames; B — single phase automated feature detection +
registration-based propagation; and C — single phase expert manual annotation +
registration-based propagation. Measurements were evaluated at two cardiac phases
— end-systole (ES) and end-diastole (ED).

LV Assessment EchoPac Auto A Manual + Reg B Auto + Reg C
Metric ED ES ED ES ED ES ED ES

Mean Vol [mL] 249.0 223.0 247.6 220.8 242.0 217.7 232.0 209.6
Std Dev Vol [mL] 3.5 10.8 3.5 3.8 2.0 1.5 10.4 9.8

LV EF (%) 10.4 ± 5.6 10.9 ± 2.0 10.0 ± 0.8 9.6 ± 0.4
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Figure 2.6: Visual comparison of the blood-pool annotations achieved via A — auto-
matic feature detection from individual frames; B — single phase automated feature
detection + registration-based propagation; and C — single phase expert manual an-
notation + registration-based propagation vs. the ground truth expert manual blood-
pool annotation (GT) quantified at end-diastole (ED) and end-systole (ES) for the
three tri-plane views (V1, V2 and V3). White regions are common between the GT
and each of the three A, B and C blood-pool estimates, red regions belong to the
expert annotated blood-pool (GT), while the blue regions belong to the blood-pool
area depicted by each of the three annotation methods A, B or C under comparison.
Panels are named according to the same convention — i.e., the panel labeled GT-B
V2 ES compares the ground truth expert-annotated blood-pool (GT) to the blood-pool
annotated using Method B displayed in View 2 at end-systole (Color version available
online).

2.4 Discussion

We described the implementation and clinical data evaluation of a rapid, auto-

matic framework that encompasses well-evaluated filtering, segmentation, registra-

tion, and volume reconstruction techniques as a means to provide a rapid, robust and
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accurate framework for feature tracking from multi-plane ultrasound image sequences.

All components of the proposed technique — segmentation, registration-based feature

tracking and propagation, and 3D blood-pool volume reconstruction — were assessed

against expert manual segmentation at both the systolic and diastolic cardiac phases

and demonstrated accurate and consistent performance, while significantly minimiz-

ing user-induced variability. Furthermore, unlike other techniques that operate on 3D

datasets, this technique enables rapid and consistent analysis of multi-plane, 2D US

image sequences — the standard format for acquisition, interpretation, and analysis

of cardiac US images.

As the proposed work-flow integrates multiple algorithms, the influence of different

parameters in the segmentation result is an important consideration. The frequency

specific to the monogenic filter operates over a wide range of values and yields a

good quality “cartoon image” for further segmentation. Similarly, for the graph cut

algorithm, the mean and standard deviations for the blood pool, muscle and back-

ground regions are adaptively extracted from the image content, while the threshold

’C’ that constraints the pixels towards same label can span a sufficiently wide range

without significantly effecting the segmentation result. Furthermore, Lamash et al.

[6] have thoroughly studied the effects of various regularization parameters in the

biomechanics-based registration; for our purpose we selected the optimal parameters

as suggested by the paper [6]. In summary, the proposed work-flow yields a consistent

segmentation result over a wide range of parameter values.

Unlike expert manual segmentation that is highly sensitive to intra- and inter-

observer variability, the proposed technique provides a consistent result for each

dataset, which can be reviewed and improved, if needed, by expert clinicians. The

single-phase feature extraction, followed by tracking and propagation via registration

further reduces uncertainty, avoiding the need to segment each frame independently

by using the a priori frame information along with the image sequence to achieve

optimal segmentation. Hence, should the expert clinician choose to perform any ad-
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justments to the single-phase segmentation, their precise tracking and propagation

throughout the cardiac cycle is guaranteed by the registration-based implementation.

2.5 Summary and Future Work

The impact and contribution of the proposed work is the integration of several im-

age processing techniques (i.e., phase-based filtering, segmentation, registration and

volume reconstruction) into a streamlined work-flow that utilizes traditional standard-

of-care 2D multi-plane TEE image sequences and fits seamlessly within the current

work-flows associated with both cardiac function assessment and intra-operative car-

diac intervention guidance and monitoring.

Ongoing and future efforts include further evaluation and demonstration of how

the proposed technique can cater to dynamically reconstructing 3D endocardial LV

representations that facilitate computer-assisted assessment of stroke volume and ejec-

tion fraction, as well as employing intra-operative multi-plane 2D TEE data to dy-

namically update and animate CT and/or MRI anatomy depicted pre-operatively to

better represent the intra-operative conditions.

Lastly, although we believe the most meaningful assessment is still against the

expert clinicians analysis of the same input data, we acknowledge the importance of

assessing the output of our proposed framework against the output of other techniques

and extend the analysis to a large dataset of multi-plane image sequences acquired

across multiple cardiac cycles.

Besides its direct application to computer-aided cardiac function assessment, the

proposed framework is readily adaptable to the guidance and monitoring of image-

guided cardiac interventions, most of which involve the use of real-time ultrasound

imaging — the clinical standard of care for cardiac procedures.
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Chapter 3

Probabilistic Atlas Prior based

Graph Cut Segmentation:

Application and Validation on Left

Ventricle Slice-wise Segmentation

from Cine Cardiac MRI

We propose a framework for left ventricle (LV) segmentation from cardiac cine

MRI 1. First, we segment the LV blood pool using iterative graph cuts, and subse-

quently use this information to segment the myocardium. We formulate the segmen-

tation procedure as an energy minimization problem in a graph subject to the shape

prior obtained by label propagation from an average atlas using affine registration.

The proposed framework has been validated on 30 patient cardiac cine MRI datasets

1This chapter is adapted from Dangi S. et al., ”Integrating Atlas and Graph Cut Methods for
Left Ventricle Segmentation from Cardiac Cine MRI.” In: Mansi T., McLeod K., Pop M., Rhode K.,
Sermesant M., Young A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging
and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science, vol 10124. Springer,
Cham
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available through the STACOM LV segmentation challenge and yielded fast, robust,

and accurate segmentation results.

3.1 Introduction

Various segmentation techniques for cardiac MR images have been proposed in

the literature [1]. Among them, multi-atlas based approaches have shown promising

results in biomedical image segmentation [2]. However, they rely on a number of com-

putationally demanding and time limiting nonrigid image registration steps followed

by label fusion. Hence despite their accuracy, most existing segmentation techniques

have experienced minimal adoption in the actual clinical applications primarily due

to their complexity, high dependence on parameters variability, and computational

demands.

On the other hand, combinatorial optimization based graph-cut techniques are

fast and guaranteed to produce results within a known factor of the global minimum,

for some special classes of functions (termed as regular functions) [3] and have proved

to be powerful tools for image segmentation. Moreover, adding a shape constraint

into the graph cut framework has been shown to improve the cardiac image segmen-

tation results significantly [4–6]. However, these methods require a manual input to

introduce a shape constraint at the right location in the image.

In this work, we leverage the performance of the graph cut framework and aug-

ment it by incorporating shape constraints [7, 8] in the form of an average atlas-based

segmentation of the anatomy whose label was generated and propagated using a single

affine registration. Subsequently, we iteratively refine the segmentation to obtain an

accurate and robust segmentation of the myocardium. Hence, we do not require any

manual input to introduce shape constraint into the graph-cut framework and simulta-

neously take advantage of the prior knowledge in the form of atlas-based segmentation

requiring affine as opposed to nonrigid registration, which is more computationally
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efficient and less sensitive to parameters variability.

3.2 Methodology

Whole heart cine MRI images are generated by stacking 2D+T short-axis slices

acquired during a single breath hold. Since this acquisition approach introduces an

intensity difference between the slices, as well as slice misalignments, we can follow

one of two approaches to segment the data: one approach is to implement a slice

motion correction protocol to realign the slices into a coherent 3D volume. The other

approach, also implemented here, resorts to slice-wise processing and segmentation

instead of a 3D segmentation.

Another challenge is the ill-defined contrast of the LV myocardium in MR images,

which makes the image-driven segmentation difficult. As such, to obtain better seg-

mentation of the apical and basal regions, we exploit the prior knowledge in the form

of an average atlas. The proposed methodology formulates the segmentation problem

in the context of a graph based energy minimization framework. The blood pool is

first segmented using an iterative graph cut technique; then, this information is used

to segment the myocardium.

3.2.1 Data Preprocessing

This study is conducted on 30 cardiac cine-MR images taken from the DETER-

MINE [9] cohort available as a part of the STACOM Cardiac Atlas Segmentation

Challenge Project database2. The semi-automatically segmented images obtained

by applying the method described in [10] accompany the dataset and serves as the

gold-standard for assessing the proposed segmentation technique.

We select a reference patient volume with good contrast (via visual inspection),

average size (104mm apex-base; dataset range: 80mm to 140mm), and horizontal

2http://www.cardiacatlas.org
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Figure 3.1: All patient images are affinely registered to the reference patient, and
the obtained optimum transformation is applied to the corresponding ground truth
images. An average intensity image is obtained by averaging the intensities of all
transformed patient images, while, the averaging of the transformed ground truth
images yields a probabilistic atlas.

LV-RV orientation (as shown in Fig. 3.1). All patient volumes are rotated about the

z-axis (i.e., slice-encoding direction) to roughly align their orientation with that of

the reference patient using the DICOM Image Orientation Patient (IPP) field. The

region of interest (ROI) (in the xy-plane) enclosing the left and right ventricles is

extracted using the method described in [11] by correlating the 2D motion images

generated from the 3D volumes across the cardiac cycle. The only manual input

required by our algorithm is the start and end slices of the LV, such that the ROI is

restricted in the z-direction, preventing over/under segmentation of slices that do not

belong to the desired anatomy. The patient volumes are cropped to the above ROI,

and, to compensate for any intensity differences (due to the slice-wise acquisition),

each slice is normalized (0.0—1.0) prior to further processing.
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3.2.2 Atlas Generation

The cropped 3D volumes (at the end diastole phase) for all patients are first his-

togram matched and then affinely registered to the reference patient image volume

using the intensity based Nelder-Meade downhill simplex algorithm [12] available in

SimpleITK. The resulting 3D affine transforms are applied to the respective ground

truth segmentations. The transformed volumes and transformed ground truths are

then averaged to obtain an average appearance atlas and a probabilistic atlas, respec-

tively (Fig. 3.1).

The average appearance atlas is registered to a test volume using intensity-based

affine registration. The resulting registration transformation is used to transform

the myocardial probabilistic label to the test data, which, in turn, serves as a shape

constraint for the graph cut framework.

3.2.3 LV Blood Pool Segmentation using Iterative Graph

Cuts

To leverage the 3D LV geometry, we use the blood pool (BP) segmentation of

a given slice to help refine the BP ROI in the neighboring slices. As such, we first

segment the BP from the mid-slice, followed by its neighboring slices, and proceed

accordingly, until the complete volume is segmented.

3.2.3.1 Intensity Distribution Model:

The myocardium probability map for each slice is normalized and inverted to pro-

duce the probability map corresponding to the blood pool (BP) and background (BG).

The resulting BP/BG probability map is thresholded at 0.5 and the inner connected

component is isolated to obtain the high confidence BP ROI. Otsu thresholding [13]

is applied within this ROI to obtain the initial BP region. The intensity values within

this extracted BP region are then fitted to a Gaussian distribution to generate the
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BP intensity model.

A binary mask enclosing the myocardium is obtained by thresholding the myocar-

dial probability map at a very small value (i.e. 0.1). Holes in the binary mask are

filled to obtain a ROI enclosing the BP, myocardium, and BG. To generate the BG

intensity model, we use the Expectation-Maximization (EM) algorithm available in

the scikit-learn library. Specifically, we fit the intensity values within the ROI, ex-

cluding the initial BP region, to a Gaussian Mixture Model (GMM) comprising two

Gaussians. Fig. 3.2a shows the resulting BP log-likelihood map.

Note that we propose the Gaussian distribution for modeling intensity noise in

MR images instead of a more appropriate Rician distribution [14]; this simplifies our

model and is a good approximation when the signal-to-noise ratio is high.

3.2.3.2 Blood Pool/Background Probabilistic Map:

To obtain a ROI that includes the myocardium and BP, we threshold the myocar-

dial probability map at 0.5, fill in the blood pool, and erode the resulting ROI by

15% (selected empirically) of the radius of its smallest circumscribed circle to obtain

the BP ROI. The BP/BG probability map masked by the BP-ROI represents the BP

probability map, and its inverse represents the BG probability map. Fig. 3.2b shows

the BP log-likelihood map.

Figure 3.2: Log-likelihood image obtained from: a) the intensity distribution model,
b) the BP probabilistic map, c) weighted sum of (a) and (b); d) segmentation obtained
from graph cut, e) convex hull of (d) yields the BP segmentation.
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3.2.3.3 Graph-Cut Segmentation:

We construct a graph with each node (i.e., pixel) connected to its east, west,

north, and south neighbors. Two special terminal nodes representing two classes —

the source (blood pool), and the sink (background) — are added to the graph and all

other nodes are connected to each terminal node. The segmentation is formulated as

an energy minimization problem over the space of optimal labelings f :

E(f) =
∑
p∈P

Dp(fp) +
∑
{p,q}∈N

Vp,q(fp, fq), (3.1)

where the first term represents the data energy that reduces the disagreement be-

tween the labeling fp given the observed data at every pixel p ∈ P , and the second

term represents the smoothness energy that forces pixels p and q defined by a set of

interacting pair N (in our case, the neighboring pixels) towards the same label.

The data energy term is represented by the terminal link (t-link) between each

node and the source (or sink), which is defined as the weighted sum of the log prob-

abilities of the intensity distribution model and the probabilistic map corresponding

to the BP (or BG):

Dp(fp) = exp (τ) ∗ [−lnPr(Ip|fp)] + (1 − exp (−τ)) ∗ [−lnPr(fp)] (3.2)

where, τ is the iteration number, Pr(Ip|fp) is the likelihood of observing the intensity

Ip given that pixel p belongs to class fp, and Pr(fp) is the prior probability for class

fp obtained from the BP/BG probability map. The log-likelihood difference between

BP and BG labels for τ = 1 is shown in Fig. 3.2c. The intensity likelihood term (first

term) allows the expansion of the BP region in the first few iterations, whereas the

prior probability map (second term) restricts its “spilling” (due to over-segmentation)

in subsequent iterations.

The smoothness energy term is computed over the links between neighboring nodes
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(n-links), which are weighted based on their intensity similarity:

Vp,q(fp, fq) =

τ ∗ exp
(
− |Ip−Iq |

τ

)
if fp 6= fq

0 if fp = fq

(3.3)

where I is the pixel intensity. To avoid the “spilling” of the BP into the myocardium

or BG, the smoothness term changes with each iteration, such that, in order for the

neighboring pixels to be assigned to the same label during the current iteration, their

intensities must be closer than in the previous iteration.

Once weights are assigned to all edges in the graph, the minimum cut equivalent

to the maximum flow is identified via the expansion algorithm described in [15]. This

approach yields the labeling (graph-cut) that minimizes the global energy of the graph

that corresponds to the optimal segmentation (Fig. 3.2d). Lastly, the convex hull

applied to the graph-cut result constitutes the final BP segmentation, such that, the

papillary muscles are included within the BP (Fig. 3.2e).

3.2.3.4 Myocardial Probability Map Refinement

The myocardial probability map is thresholded at 0.5, and the inner hollow circu-

lar region representing the BP is extracted. The signed distance map corresponding

to the boundary of the extracted BP region is affinely registered to the signed dis-

tance map generated from the boundary of the graph-cut extracted BP (3.2.3) seg-

mentation. The optimum affine transformation that minimizes the sum of squared

differences between the two distance maps is applied to the myocardial probability

map, such that, it fits the shape of the segmented BP.

3.2.3.5 Iterative Refinement:

The latest BP segmentation obtained from the graph cut is used to update the

intensity distribution model. The refined myocardial probability map is used to con-

struct a new BP/BG probability map. The pixels within the latest BP segmentation
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Figure 3.3: a) Probability map and intensity distribution model for current iteration,
b) BP segmentation obtained from graph cut using (a), c) updated probability map
and intensity distribution model obtained using (b), d) new BP segmentation obtained
from graph cut using (c).

are assigned very high likelihood (for belonging to the BP), and hence their labels do

not change. An updated BP segmentation is obtained via another graph cut operat-

ing on the new graph energy configuration. This iterative process is repeated until

the changes in the affine transform parameters for the myocardium probability map

are below a predefined threshold; this iterative process usually converges within three

iterations. Upon convergence, the convex hull defined by the latest segmentation

result constitutes the final BP segmentation. The iterative refinement process takes

three iterations in average for convergence and is illustrated in Fig. 3.3.

3.2.4 Myocardium Segmentation

The information from the BP segmentation along with the refined myocardial

probability map is used to segment the myocardium.
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Figure 3.4: Log-likelihood image obtained from: a) the intensity distribution model,
b) the refined myocardium probability map, c) distance from the endocardium; d) the
weighted sum (w1, w2, and w3) of (a), (b), and (c), respectively; e) final myocardium
segmentation obtained from graph cuts

3.2.4.1 Intensity Distribution Model:

We select a ROI in each slice based on the refined probability map, and we match

the histogram of the pixel intensities within this ROI to the histogram of the mid-

slice. We select the mid-slices (i.e. no apical/basal slices) to obtain a single intensity

distribution model for the whole volume. The intensities of the pixels within the

refined myocardial mask with probability higher than 0.5 are fitted to a single Gaus-

sian GMM to obtain the myocardium intensity distribution model. Similarly, the

intensities of the remaining pixels are fitted to a three Gaussian GMM to obtain the

BG intensity distribution model. Fig. 3.4a shows the log-likelihood map for the

myocardium.

3.2.4.2 Distance from the Endocardial Border:

The endocardial border is obtained from the outer edge of the final BP segmenta-

tion (Fig. 3.2e). The knowledge that myocardium should be closer to the endocardial

border is encoded in the data term represented by the truncated distance map (em-

pirically selected as 10 pixels). This constraint increases the likelihood of pixels near

the endocardial border to be labeled as myocardium, while reducing this likelihood

for the pixels located further away. Furthermore, to prevent the BP region from being

labeled as myocardium, it is assigned the lowest likelihood value (Fig. 3.4c).
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3.2.4.3 Graph-Cut Segmentation:

A graph is constructed similar to the formulation described in 3.2.3.3, but this

time to classify the myocardial rather than blood pool pixels. The data term is

defined as the weighted sum of the intensity distribution model, refined myocardial

probability map (as described in 3.2.3.4 and Fig. 3.4b), and the distance from endo-

cardial border, with increasing relative influence, respectively. The smoothness term

varies spatially according to the intensity difference between the neighboring pixes,

as discussed in 3.2.3.3. The minimum cut in the graph yields the final myocardium

segmentation (Fig. 3.4e).

3.3 Results

The proposed algorithm was implemented in Python and required 45 seconds on

average to segment the BP and myocardium from cine MRI volumes on an Intel R©

Xenon R© 3.60 GHz 32GB RAM PC.

Adhering to the collated results reported for the LV segmentation challenge in

[16], we evaluated our segmentation with four-fold cross-validation on 30 patient

dataset according to the following metrics: dice index, jaccard index, sensitivity,

specificity, positive predictive value (PPV), and negative predictive value (NPV) [16].

To maintain approximately equal number of myocardium and non-myocardium pixels

for evaluation, such that the NPV conveys some useful information, we dilated each

slice of the myocardium region, for the provided gold standard segmentation, by one

fourth of the radius of the disk with equivalent area. The segmentation results for

a patient dataset are overlaid onto each slice of the patient volume and shown in

Fig. 3.5a. Fig. 3.5b shows a visual comparison of our segmentation results vis-à-vis

the provided semi-automated segmentation serving as a gold-standard. The metrics

are summarized in Table 3.1 for all slices together, as well as for the mid-slices and

apical/basal slices (first and last two slices, respectively) separately.
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Table 3.1: Evaluation of our segmentation results against the provided gold-standard
semi-automated segmentation for the mid-slices, apical/basal slices according to Dice
Index, Jaccard Index, Sensitivity, Specificity, PPV, and NPV.

Assessment Metric Mid-Slices Apical/Basal-Slices All Slices

Dice Index 0.811± 0.068 0.568± 0.241 0.740± 0.180
Jaccard Index 0.687± 0.091 0.433± 0.222 0.613± 0.183

Sensitivity 0.854± 0.104 0.596± 0.268 0.783± 0.195
Specificity 0.788± 0.103 0.725± 0.180 0.770± 0.134

PPV 0.789± 0.079 0.714± 0.160 0.767± 0.114
NPV 0.866± 0.086 0.640± 0.224 0.800± 0.174

Table 3.2: Evaluation of segmentation results against the provided gold-standard
semi-automated segmentation according to Jaccard Index. The values for methods
AU, AO, SCR, and INR are obtained from Table 2 in [16] computed for the LVSC
validation set against the consensus manual segmentation (CSMAN) as described in
[16]. Values are provided as mean ± standard deviation, and in descending order by
Jaccard index. SA/FA — Semi/Fully-Automatic

Method SA/FA Jaccard Index

AU [10] SA 0.80± 0.19
AO [17] SA 0.79± 0.19

Proposed FA 0.61± 0.18
SCR [18] FA 0.59± 0.19
INR [19] FA 0.49± 0.10
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Figure 3.5: a) Final myocardium segmentation of all slices of a patient dataset (shown
in blue) superimposed with the patient volume (shown in red); b) Final myocardium
segmentation assessed against the provided gold-standard semi-automatic segmenta-
tion; white regions represent true positives, red regions represent false negatives, and
blue regions represent false positives.

3.4 Discussion, Conclusion, and Future Work

Our validation experiments summarized in Table 3.2 show that our segmentation

results are as good as or better than the fully automatic methods, SCR [18] and INR

[19], as reported in [16]. Nevertheless, both the semi-automatic methods AU [10] and

AO [17] involved substantial human involvement: specifically, AU used guide-point

inputs from human observer to fit a finite element cardiac model to the MR data,

while AO used a modified optical flow algorithm to track an initial contour manually

drawn on the first frame. However, it should be noted that the metrics reported

in [16] were evaluated against the consensus manual segmentation (CSMAN) esti-

mated based on three semi-automated methods obtained using STAPLE algorithm

on the LV segmentation challenge validation set across the cardiac cycle, whereas ours

is compared against the provided semi-automatic gold standard segmentation on the

end-diastole phase, when myocardium is thinnest and more prone to segmentation er-

rors, evaluated on 30 training set patients based on four-fold cross-validation. Hence,

the metrics provide only an approximate estimate of our algorithm’s performance
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compared to the ones that participated in the challenge. Moreover, the average seg-

mentation time of 45 secs per volume for an unoptimized code in Python presents a

great potential of our algorithm for near real-time clinical applications.

Since the BP region in the mid-slices are better defined than in the apical/basal

slices, the segmentation results are consistently better for the mid-slices. We also

observed that the slice-wise processing and iterative refinement might compromise

the segmentation of the apical/basal slices due to ill-defined BP regions, suggesting

the need for special processing for these slices.

As part of our future work, we plan to automate the ROI detection in z-direction

to eliminate the manual input required by our algorithm. In addition, instead of

using a constant truncating endocardial distance constraint, we plan to use image-

derived edge information to enable spatially varying truncating distances to improve

the myocardium segmentation. Similarly, we will study the effect of selecting different

thresholds for the probability maps, weight variability on the likelihood terms and,

in turn, on the final myocardium segmentation. Lastly, we plan to extend the work

and evaluate the segmentation performance on all 100 patient datasets and report

performance according to the metrics outlined above.
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Chapter 4

Probabilistic Atlas Prior based

Graph Cut Segmentation:

Application and Validation on

Right Ventricle Slice-wise

Segmentation from Cine Cardiac

MRI

Right ventricle segmentation helps quantify many functional parameters of the

heart and construct anatomical models for intervention planning. Here we propose

a fast and accurate graph cut segmentation algorithm to extract the right ventricle

from cine cardiac MRI sequences 1. A shape prior obtained by propagating the right

1This chapter is adapted from:
Dangi S. et al., ”Integrating atlas and graph cut methods for right ventricle blood-pool segmentation
from cardiac cine MRI,” Proc. SPIE 10135, Medical Imaging 2017: Image-Guided Procedures,
Robotic Interventions, and Modeling, 1013519 (3 March 2017)
Dangi S. et al., ”Using Atlas Prior with Graph Cut Methods for Right Ventricle Segmentation from
Cardiac MRI.” In: Pop M., Wright G. (eds) Functional Imaging and Modelling of the Heart. FIMH
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ventricle label from an average atlas via affine registration is incorporated into the

graph energy. The optimal segmentation obtained from the graph cut is iteratively

refined to produce the final right ventricle blood pool segmentation.

4.1 Introduction

The complex motion and anatomy of the RV, indistinct borders due to blood flow

and partial volume effect, and the presence of trabeculations (with similar gray level

as the surrounding myocardium), makes the segmentation of RV a challenging task

[1]. RV segmentation is performed manually in clinical practice, requiring about 15

minutes, and is prone to inter and intra-expert variability [2]. This suggests a need

for fast, accurate, and robust semi- or fully-automatic RV segmentation algorithms.

Various techniques have been proposed in the literature [1]. Nevertheless, the focus

has primarily been on the left ventricle (LV) segmentation and very limited work has

been disseminated on the RV segmentation. Hence, here we adapted the techniques

researched and applied to segment the LV from cine cardiac MR images to a different

dataset specifically focused on the RV. We exploit the speed of the graph cut frame-

work and improve it by incorporating an average atlas based segmentation (obtained

using a single affine registration) as a shape constraint. Subsequently, we iteratively

refine the segmentation using techniques similar to those described in [3, 4] to obtain

an accurate and robust segmentation of the RV blood pool. The fast and accurate

segmentation obtained from the developed method can be used for several time-

constraining applications, including peri-operative generation of subjects-specific RV

models for surgical planning and guidance applications.

2017. Lecture Notes in Computer Science, vol 10263. Springer, Cham
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4.2 Methods

4.2.1 Data Preprocessing

This study employed 16 cardiac cine MRI datasets available through MICCAI

2012 Cardiac MR Right Ventricle Segmentation Challenge (RVSC)2. Expert manual

segmentation of the RV images were provided with the dataset and served as the

gold-standard for evaluating the proposed segmentation technique.

We first select a reference patient volume with good contrast (via visual inspection

of the dataset) and LV-RV orientation with RV appearing on the top right position

(as shown in Fig. 4.1). The DICOM Image Orientation Patient (IPP) field is used

to rotate the patient volumes about the z-axis to roughly align the LV-RV orientation

of each dataset with that of the selected reference patient. We then find the region

of interest (ROI) (in the xy-plane) enclosing the left and right ventricles using the

method described in [5]. To restrict the ROI along the z-axis, we require a manual

input that indicates the start and end slices of RV anatomy. The image volumes are

then cropped according to the above ROI, and the intensity range of each slice is

normalized prior to the subsequent steps.

4.2.2 Atlas Generation

We affinely register all cropped 3D volumes to the selected reference patient using

the intensity based Nelder-Meade downhill simplex algorithm [6] available in Sim-

pleITK. The resulting affine transforms are applied to the respective ground truth

datasets. Averaging the transformed volumes as well as the transformed ground

truths yields an average appearance atlas and a blood pool (BP) probabilistic atlas,

respectively Fig. 4.1.

2http://www.litislab.eu/rvsc
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Figure 4.1: All patient images are affinely registered to the reference patient, and
the obtained optimum transformation is applied to the corresponding ground truth
images. An average intensity image is obtained by averaging the intensities of all
transformed patient images, while the averaging of the transformed ground truth
images yields a probabilistic atlas.

4.2.3 RV Blood Pool Segmentation using Iterative Graph

Cuts

To exploit the 3D cardiac geometry information, we use the BP segmentation of

a given slice to initialize the BP ROI in the neighboring slices. As such, we first

segment the mid-slice, followed by its neighboring slices, and proceed accordingly,

until the complete volume is segmented.

4.2.3.1 Blood Pool Probabilistic Map:

The average appearance atlas is registered to a test volume (Fig. 4.2a) using in-

tensity based 3D affine registration. The resulting affine transform is used to transfer

the BP probabilistic label to the test data. The obtained label is normalized (0-1) per

slice to generate a BP probabilistic map, which helps in BP initialization and serves
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Figure 4.2: BP Segmentation procedure: a) original MR image slice, b) the initial
BP ROI obtained by thresholding the BP probability map, c) initial BP segment
obtained by otsu thresholding and cleaning; d) BP log-likelihood and e) BG log-
likelihood obtained from intensity distribution model; (f) the graph-cut segmentation
result; g) final BP segmentation for current iteration obtained after post-processing.

as a shape constraint for subsequent graph cut segmentation.

4.2.3.2 Blood Pool Initialization:

The probabilistic map is thresholded to obtain an initial BP ROI (Fig. 4.2b). All

the basal slices (including and above the mid-slice) are thresholded at a very small

value (0.01) to account for the large BP size, whereas, the threshold is determined

automatically, as a mean value for the probabilistic map, for the apical slices to restrict

the BP size to a smaller region. Otsu thresholding [7] applied to the obtained BP ROI

yields a set of potentially bright BP segments. A single connected component closest

to the center of the BP ROI is used as initial BP segmentation shown in Fig. 4.2c.

4.2.3.3 Intensity Distribution Model:

The BP intensity model is obtained by fitting the intensity values within the initial

BP segmentation to a Gaussian Mixture Model (GMM) comprising one Gaussian.
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The remaining intensity values inside the initial BP ROI are fitted to a two-Gaussian

GMM to yield the background (BG) intensity model. Fig. 4.2d and Fig. 4.2e

show the resulting BP and BG log-likelihood map, respectively. Although Rician

distribution [8] has been found more appropriate for modeling intensity noise in MR

images, signal-to-noise ratio for our MR data is high, hence, we rely on a simpler

model using Gaussian approximation.

4.2.3.4 Graph-Cut Segmentation:

A four-neighborhood graph is constructed with each pixel representing a node.

Two special terminal nodes representing two classes — the source blood pool (BP),

and the sink background (BG) — are added to the graph. The segmentation is

formulated as an energy minimization problem over the space of optimal labelings f :

E(f) =
∑
p∈P

Dp(fp) +
∑
{p,q}∈N

Vp,q(fp, fq), (4.1)

where the first term represents the data energy that reduces the disagreement be-

tween the labeling fp given the observed data at every pixel p ∈ P , and the second

term represents the smoothness energy that forces pixels p and q defined by a set of

interacting pair N (in our case, the neighboring pixels) towards the same label.

The data energy term encoded as terminal link (t-link) between each node to

source (or sink) is assigned based on the log likelihood computed from the intensity

distribution model:

Dp(fp) = −lnPr(Ip|fp) (4.2)

where Pr(Ip|fp) is the likelihood of observing the intensity Ip given that pixel p

belongs to class fp. The log-likelihood for BP and BG are shown in (Fig. 4.2d) and

(Fig. 4.2e), respectively.

The smoothness energy term is computed over the links between neighboring nodes

(n-links) and is assigned as a weighted sum of intensity similarity between the pixels
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and average probability of the pixels belonging to BP based on BP probabilistic atlas:

Vp,q(fp, fq) =

wI ∗ exp
(
− |Ip−Iq |

τ

)
+ wA ∗ exp

(
PA(p)+PA(q)

2

)
if fp 6= fq

0 if fp = fq

(4.3)

where, τ is the iteration number, wI and wA are weights for the intensity similarity

term and atlas prior term, respectively, and PA(·) is the probability of a pixel be-

longing to BP obtained from the atlas. The intensity similarity term changes during

each iteration such that the pixels with higher intensity difference can be assigned

the same label to allow the expansion of BP as the iteration proceeds.

After defining the graph energy configuration, the minimum cut equivalent to

the maximum flow is identified via the expansion algorithm described in [9]. This

approach yields the labeling that minimizes the global energy of the graph and cor-

responds to the optimal segmentation. Fig. 4.2f shows the graph-cut result, which

yields the BP segmentation after some post processing Fig. 4.2g.

Figure 4.3: a) Probability map and intensity distribution model for current iteration,
b) BP segmentation obtained from graph cut using (a), c) updated probability map
and intensity distribution model obtained using (b), d) new BP segmentation obtained
from graph cut using (c).
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4.2.3.5 Blood Pool Probability Map Refinement:

The mean value of the BP probabilistic map is used as a threshold to obtain the

BP region. The signed distance map corresponding to the extracted BP region is

affinely registered to the signed distance map generated from the boundary of the

BP segmentation obtained from graph-cuts, such that, the sum of squared differ-

ences between the two distance maps is minimized. The optimum affine transform,

when applied to the BP probability map, transforms it according to the latest BP

segmentation.

4.2.3.6 Iterative Refinement:

We employed the iterative refinement technique as described in [10]. The latest BP

segmentation obtained from the graph cut is used to update the intensity distribution

model for BP/BG. Very high intensity likelihood Pr(Ip|fp) is assigned to the pixels

labeled as BP in the current iteration, such that they don’t change their labels.

The refined BP probability map is used to impose shape constraint into the graph-

cut framework in the form of smoothness energy. An updated BP segmentation is

obtained via another graph cut operating on the new graph energy configuration.

This iterative process is repeated until the dice coefficient between two latest BP

segmentations exceed 99%. On average, the process requires about three iterations

for convergence, hence the maximum number of iterations is restricted to 10. The

latest segmentation result yields the final BP segmentation. Fig. 4.3 illustrates the

iterative refinement process.

4.3 Results

Segmentation results for a patient dataset are overlaid onto each slice of the patient

volume and shown in Fig. 4.4a. Fig. 4.4b shows the visual comparison of our

segmentation result against the provided manual segmentation.
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Figure 4.4: a) Final BP segmentation of all slices of a patient dataset (shown in blue)
superimposed with the patient volume (shown in red); b) Final BP segmentation
assessed against the provided gold-standard manual segmentation; white regions rep-
resent true positives, red regions represent false negatives, and blue regions represent
false positives.

Table 4.1: Evaluation of our segmentation results against the provided gold-standard
manual segmentation for the basal and apical slices according to Dice Index, Jaccard
Index, Mean Absolute Distance, and Hausdorff Distance

Assessment Metric Basal Slices Apical Slices All Slices

Dice Index 0.89± 0.12 0.62± 0.32 0.83± 0.22
Jaccard Index 0.82± 0.15 0.52± 0.30 0.75± 0.23

Mean Absolute Distance (mm) 3.73± 4.16 11.11± 15.05 5.50± 8.69
Hausdorff Distance (mm) 8.25± 7.42 15.57± 12.57 10.00± 9.40

We evaluated the obtained RV blood pool segmentations against the provided

expert manual segmentations for 16 datasets according to the following metrics: Dice

Metric (DM), Jaccard Metric (JM), Mean Absolute Distance (MAD), and Hausdorff

Distance (HD) [1]. The metrics are summarized in Table 4.1 for all slices together,

as well as for the apical-slices (last two slices) and remaining slices separately.
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Table 4.2: Evaluation of the segmentation results against the provided gold-standard
manual segmentation for the end-diastole phase according to Dice Index and Haus-
dorff Distance, shown for various methods extracted from the published manuscripts.
Values are provided as mean ± standard deviation in descending order by Dice index.
SA/FA — Semi/Fully-Automatic. * — cross-validated on training set, †— evaluated
on held out test set

Method SA/FA Dice Index Hausdorff Distance

Zuluaga et al.† [11] FA 0.83± 0.17 9.77± 7.88
Proposed∗ FA 0.83± 0.22 10.00± 9.40
Ou et al.† [12] FA 0.71± 0.22 14.45± 9.34

Bai et al.† [13] SA 0.86± 0.11 7.70± 3.74
Grosgeorge et al.† [14] SA 0.83± 0.15 9.48± 5.41
Nambakhsh et al.∗ [15] SA 0.70± 0.21 15.83± 10.92

The collated results for the RVSC are reported in [1]. The inter-expert variability

study in [1] shows the variability in DM and HD are 0.90± 0.10 and 5.02± 2.87mm,

respectively. As evident from Table 4.2, our proposed algorithm performs equiva-

lently to the best fully automatic method and is as competitive as the semi-automatic

methods against which it is assessed. However, it should be noted that our method

was cross-validated on the training dataset (compared against the provided ground

truth segmentation), whereas some of the reported results were obtained by testing

on the validation dataset held-out by the challenge organizers. Nevertheless, there is

still a room for improvement to reach the performance equivalent to the inter-expert

variability.

Axial, Sagittal, Coronal, and the 3D reconstruction of the segmented RV blood

pool overlayed onto the MRI volume is shown in Fig. 4.5. The signed distance error

computed between the 3D models of the segmented RV blood pool and the provided

expert manual segmentation is overlaid onto the latter and shown for three different

cases in Fig. 4.6.

We computed the End Diastole (ED) RV blood pool volume for 16 datasets and
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Figure 4.5: Axial, Sagittal, Coronal, and the 3D model (counter-clockwise from top
left) of the segmented RV blood pool overlayed onto the MRI image.

Table 4.3: Comparing the end diastole RV blood pool volume estimated by the pro-
posed algorithm against the ground truth volume for 16 cine MRI images

Assessment Metric Ground Truth Proposed Algorithm Difference

ED Volume (ml) 129.7± 38.1 122.0± 29.0 7.8± 16.6

compared it against the volume computed from the provided expert manual segmen-

tation as shown in Table 4.3. Fig. 4.7a shows the correlation between the RV vol-

ume reconstructed from our automated segmentation and the volume reconstructed

from the manual expert segmentation. As illustrated, a linear correlation (defined by

y = 1.2x) exists, where y is the ground truth RV volume and x is the segmented RV
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Figure 4.6: Shown for three cases: Signed distance error between the segmented RV
blood pool and the corresponding gold standard manual segmentation overlayed onto
the 3D model of the latter.

volume in mL, respectively. Moreover, the linear R2 value is 0.83, showing a strong

correlation between the automatically segmented and ground truth RV volume.

Figure 4.7: a) Linear regression result for ground truth volume against the volume
estimated by the algorithm. The best fit line is y = 1.2x, with r-squared value of
0.83; b) Difference between the ground truth volume and volume estimated by the
algorithm plotted for all 16 cases. The mean difference (7.8 ml) along with the 95%
confidence interval (±1.96SD: -24.8 to 40.4 ml) are shown as the dotted lines.

The Bland-Altman plot in Fig. 4.7b shows the difference between the ground

truth and automatically segmented volume for all 16 datasets. Although the es-
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timated volume is linearly correlated to the ground truth volume, our automatic

segmentation algorithm slightly under-estimated the RV volume by 7.8 ± 16.6 mL

on average. Specifically, the volume was under-estimated for 5 of the patients (1,

5, 10, 11, 14) and over-estimated it for the remaining 11 patients. Lastly, with the

exception of one single dataset (patient 10), who is clearly an outlier as it exhibited

a difference between the automatically segmented and ground truth volume of more

than 3 SDs from the mean (i.e., a z-score larger than 3), all other cases exhibited a

volume difference within 2 SDs from the mean.

The proposed algorithm was implemented in Python and required 76 secs on

average to propagate atlas label and segment RV blood pool from cine MRI volumes

(12±1 axial slices) on a Intel R© Xenon R© 3.60 GHz 32GB RAM PC, therefore posing a

great potential for peri-operative segmentation of RV without delaying the procedure

workflow. The atlas is precomputed, in 450 seconds, by co-registering and averaging

the training images.

4.4 Discussion

We observed that the segmentation results for apical slices with smaller BP region

are consistently worse than that for the basal slices. Although they have very little

impact on volume computation, they could be a limiting factor on other fields such

as studies of the fiber structure. Slice-wise refinement process might be hurting the

performance of our segmentation algorithm due to the misleading cues on apical

slices, which suggests a need for special processing of these slices. An alternative

solution for better segmentation of apical slices would be to perform a complete 3D

segmentation, which requires a robust algorithm to align the cine MRI slices into

a complete 3D volume to correct for stair-step artifacts caused by inherent motion

between subsequent slices prior to segmentation.

Since the expert annotated ground truth segmentations of the right ventricle are
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only available in end diastole and end systole, only two atlases could be constructed

– a diastole and a systole atlas. We have in fact attempted to generate a systole atlas

based on the same techniques used to generate the diastole atlas, however the apical

slices are compromised due to the wrapping of the right ventricle around the left

ventricle, making it difficult to identify the blood pool from the myocardium in this

region and hence compromising the accuracy of the atlas and its robustness across

all datasets.

Nevertheless, a more feasible approach would be to take advantage of the tem-

poral information and correlation of the subsequent frames in the cardiac cycle and

use the frame-to-frame motion to animate the single phase diastolic right ventricle

segmentation extracted using the diastole right ventricle atlas faithfully generated as

described in this paper. The proposed method will follow the approach described in

[16]. Briefly, we will utilize non-rigid image registration to extract the frame-to-frame

motion from the sequence of multi-phase cardiac images depicting the right ventricle

and then apply the non-rigid displacement field to propagate the segmented right

ventricle diastolic surface through the cardiac cycle.

4.5 Conclusion and Future Work

We proposed a fast and automatic segmentation method using atlas prior in the

graph cut framework with iterative refinement to segment the RV blood pool from

cardiac cine MRI images. Quantitative results of our blood pool segmentation in

the ED phase are better than the fully-automatic methods and comparable to the

semi-automatic methods reported in the challenge.

We plan to segment the RV myocardium and extend the evaluation of our algo-

rithm to end diastole and end systole phases of all the 48 datasets (16 training, 32

testing). Furthermore, we will be studying the effect of weighting factor variability on

different terms of graph energy towards final segmentation result and lastly, we will
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also be exploring other options to improve the segmentation results for apical slices.
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Chapter 5

Towards Deep Learning Techniques

for Cardiac Cine MRI Slice

Misalignment Correction and 3D

Hybrid Left Ventricle

Segmentation

There exists an inevitable misalignment between the slices in the cine MRI image

due to the 2D + time acquisition, rendering 3D segmentation methods ineffective.

A large part of published work on cardiac MR image segmentation focuses on 2D

segmentation methods that yield good results in mid-slices, however with less accurate

results for the apical and basal slices. Here, we propose an algorithm 1 to correct for

the slice misalignment using a Convolutional Neural Network (CNN)-based regression,

and then perform a 3D graph-cut based segmentation of the LV using atlas shape prior.

1This chapter is adapted from: Dangi S. et al., ”Cine cardiac MRI slice misalignment correction
towards full 3D left ventricle segmentation,” Proc. SPIE 10576, Medical Imaging 2018: Image-
Guided Procedures, Robotic Interventions, and Modeling, 1057607 (12 March 2018)
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5.1 Introduction

Cine cardiac MRI images are acquired one slice at a time throughout the car-

diac cycle (2D + time acquisition), during a single breath-hold. Multiple short-axis

slices covering the entire heart generates a pseudo-4D volume. Hence, there is an

inherent misalignment between the slices due to the patient motion and breathing. A

comprehensive review of segmentation techniques applied to short-axis cardiac MR

images can be found in [1]. Most of the algorithms operate on the 2D image slices,

including our methods presented in Chapter 3 and Chapter 4. The obtained 2D

segmentations are then stacked together to reconstruct a 3D volume. However, ex-

tensive blurring and interpolation is required to get rid of the stair-step artifacts due

to the slice misalignment, as well as the partial volume effects arising from the finite

slice thickness. Hence, there is a significant potential of leveraging the 3D context

during segmentation, such as the 3D extension of the 2D atlas-prior based graph cut

technique presented in earlier chapters. Nevertheless, the full 3D segmentation first

requires the slice misalignment correction to generate a contiguous 3D volume.

Several methods for slice misalignment correction have been previously proposed.

Elen et al.[2] optimized the intensity similarity between the 2D long axis (LA) and

short axis (SA) slices along the line of intersection. Similarly, Slomka et al.[3] per-

formed 3D registration of LA and SA slices by minimizing the cost function derived

from plane intersections for all cine phases. Although helpful, these algorithms fea-

ture limited robustness, as they rely on a limited amount of information available at

the plane intersections. Therefore, since the alignment of acquired 2D cine MR slices

into a full, cohesive 3D volume is challenging and prone to error, most of the seg-

mentation algorithms rely on 2D processing, compromising the segmentation results

in the apical and basal regions.

Here we propose a novel CNN architecture that uses multi-resolution features to

accurately regress the center of the LV blood-pool from cine MRI slices. We train the
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CNN to predict the LV center using a large dataset representative of wide variability

in cardiac cine MR short-axis images. For the segmentation of a test image, we predict

the LV centers for all the slices using the trained CNN. Subsequently, we correct for

the slice misalignment to generate a full 3D test volume. Finally, we leverage the 3D

information to segment the LV blood-pool and myocardium using the 3D extension of

the atlas and graph-cut based segmentation technique presented in Chapter 3 and

Chapter 4.

5.2 Methodology

5.2.1 Cardiac MRI Data

This study employed 97 de-identified cardiac MRI image datasets from patients

suffering from myocardial infraction and impaired LV contraction available as a part

of the STACOM Cardiac Atlas Segmentation Challenge project [4, 5] database2. Cine-

MRI images in short-axis and long-axis views are available for each case. The images

were acquired using the Steady-State Free Precession (SSFP) MR imaging protocol

with the following settings: typical thickness ≤ 10mm, gap ≤ 2mm, TR 30− 50ms,

TE 1.6ms, flip angle 600, FOV 360mm and 256×256mm image matrix using multiple

scanners from various manufacturers.

We divided the 97 available dataset into 80% training, 10% validation (to avoid

over-fitting during training), and 10% test set, and perform our evaluation on the test

set.

5.2.1.1 LV blood-pool ground-truth generation

Ground truth myocardium segmentation generated from expert analyzed 3D sur-

face finite element model is available for all 97 cases. As the slice segmentations are

2http://www.cardiacatlas.org
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obtained from the intersection of image slices with the 3D model, partial myocardium

can be observed in some basal slices. To obtain the corresponding blood-pool seg-

mentation, each slice of the provided myocardium segmentation is inverted and a

morphological opening operation is performed. If the connected component analysis

results in two connected components, the smaller connected region is selected as the

blood-pool. Hence, the slices with partial myocardium do not yield any blood-pool

region. This has a significant effect in the segmentation evaluation of basal slices.

5.2.2 Data Preparation and Augmentation

The physical pixel spacing in SA images ranged from 0.7031 to 2.0833 mm. We

used SimpleITK [6] to resample all images to the most common spacing of 1.5625

mm along both x- and y-axis. The resampled images were center cropped or zero

padded to a common resolution of 192 × 192 pixels. To simulate the real-world

scenario, the images were transformed using combinations of 9 translations (±10%)

along x- and y- axis, 7 rotations (±100,±200,±300), and 3 scaling (±10%). The

resulting 189 different combinations were used to train the CNN. The ground truth

LV center was computed as the centroid of the LV blood pool obtained from the inner

contour of the provided ground truth myocardium segmentation. The LV center from

closest mid-slice was propagated to the apical/basal slices with partial/no ground

truth myocardium segmentation.

5.2.3 CNN Architecture for LV Center Regression

We propose a novel CNN architecture to predict the LV blood-pool center from

SA cine MR images. The proposed approach requires minimal preprocessing (i.e.

resampling and crop/pad to fixed resolution) and minimal user input to generate a

training set, as the expert needs to select a single LV center point per image.

The CNN network architecture is shown in Fig. 5.1. The input image is passed
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Figure 5.1: CNN Architecture for regression of the LV center from cardiac cine MRI
short-axis slices.

through several convolutional layers followed by Rectified Linear Unit (ReLU) non-

linearity and four max-pooling layers spread across the network. The global image

information obtained in the final convolutional layers are flattened into a single vector

to form a fully connected layer. In addition, we generate a single feature map from

each resolution and feed it directly to the fully connected layer. These skip connections

enable the network to use multi-resolution features to yield a more accurate prediction

of the LV center, while maintaining the number of tractable network parameters . The

output of the network consists of two values representing the x- and y- coordinates

of the LV center.

5.2.4 Slice-misalignment Correction

Assuming there is only translational misalignment between the slices, we translate

the predicted LV centers so that they are collinear, resulting in a corrected 3D volume.
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(a) Before Misalignment Correction (b) After Misalignment Correction

Figure 5.2: Reconstructed 3D models generated from the ground-truth LV my-
ocardium segmentation before and after slice misalignment correction.

Fig. 5.2 shows the 3D volume reconstructed from the ground-truth LV myocardium

segmentation before and after misalignment correction. This step helps restore the 3D

connectivity structure of the LV improving the subsequent graph-cut segmentation.

5.2.5 LV Blood-pool Segmentation

We extend the atlas prior based graph-cut segmentation method presented in [7]

to 3D for the segmentation of LV blood-pool from the slice-misalignment corrected

3D volume.

5.2.5.1 Atlas Generation

We select a patient volume with an average LV size as a reference. All other train-

ing patient volumes are registered to this reference utilizing the ITKv4 registration

framework [8] via the SimpleITK interface [6]. We use an affine transformation, with

the mutual information similarity metric and the Nelder-Meade optimizer. The reg-

istration initialization uses the ground-truth myocardium bounding boxes to obtain

initial scaling. The optimum transformation parameters are applied to the corre-

sponding blood-pool segmentations. The registered patient volumes and blood-pool

segmentations are averaged to obtain the average intensity atlas and blood-pool prob-
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ability map, respectively.

5.2.5.2 Blood-pool Label Transfer

Robust registration of the average intensity atlas to a new test patient volume is

crucial for the subsequent graph-cut segmentation. However, due to large variability

in LV sizes in the dataset, and the tendency of optimizers to converge to a local

minimum, registration results using a single starting point in parameter space are

unreliable. We therefore perform the registration from multiple starting points that

are selected using an exhaustive search strategy on the scale parameters along each

axis and on the translation along the long axis, z direction, of the affine transforma-

tion. We evaluate the value of the normalized cross-correlation (NCC) between the

atlas and the test volume using multiple scale factors. The parameters corresponding

to the top k=5 similarity metric values are used as initial values for the subsequent

registrations. Finally, the optimum transformation resulting in the best NCC metric

is applied to the blood-pool probability map to transfer the label to the test volume

as shown in Fig. 5.3a. The test patient image is cropped based on the blood-pool

probability map to reduce the computational complexity for subsequent graph-cut

segmentation. The algorithm for blood-pool label transfer is shown in Algorithm 1.

5.2.5.3 Graph-cut Segmentation

We represent the cropped test volume as a 3D graph with 6-neighbor connectiv-

ity. Two special terminal nodes representing two classes — the source background

(BG), and the sink blood pool (BP) — are added to the graph. The segmentation is

formulated as an energy minimization problem over the space of optimum labelings

f:

E(f) =
∑
p∈P

Dp(fp) +
∑
{p,q}∈N

Vp,q(fp, fq), (5.1)
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Figure 5.3: Example of left ventricle blood-pool segmentation using the proposed approach: a)

Blood-pool probability map transferred to the test volume via registration; b) Initial Graph-cut

segmentation (first Iteration); c) Segmentation result after refinement based on Intersection-over-

Union, small over-segmented region in aorta similar in intensity with blood-pool has been removed;

d) Segmentation result after iterative refinement (converged on third iteration); e) Final blood-pool

segmentation after refinement using Stocastic Outlier Selection, over-segmented basal slice with

distinct shape statistics compared to other slices has been removed.
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Algorithm 1: Blood-pool Label Transfer

Input: Average Intensity Volume, A; BP Probability Map, P; Test Volume, I;

Training LV scaling factors, XN×3

Parameters: Number of scales, s; Number of z-translations, t; Number of

transform initializations, k

Output: Optimum affine transformation, Topt

1 Sample scales from 3-variate Gaussian fitted to Training LV scales ;

2 M1×3 ← mean(XN×3); C3×3 ← (XN×3-M1×3)T (XN×3-M1×3);

3 C3×3 → L3×3
T L3×3;

4 Sx,Sy,Sz ← linspace(−2,2,s);

5 Ns3×3 ← Permutation(Sx,Sy,Sz);

6 Ss3×3 ← M1×3 + Ns3×3 L3×3;

7 Txt×3 ← (0, 0, linspace(-Spacing(I),Spacing(I),t));

8 Es3t×6 ← Permutation(Ss3×3,Txt×3);

9 for i in Es3t×6 do

10 Compute Normalized cross-correlation between I and transformed A;

11 SM [i] ← NCC(I,Ti(A));

12 end

13 ek ←Es3t×6 [MaxInd(SM ,k)] if unique Sz;

14 for j in ek do

15 Perform registration using each k initializations ;

16 Topt j ← argmax
Tj

NCC(I,Tj(A));

17 SM [j] ← NCC(I,Toptj(A)) ;

18 end

19 maxInd ← MaxInd(SM ,1); Topt ← ToptmaxInd;



www.manaraa.com

114

where the first term represents the data energy that reduces the disagreement be-

tween the labeling fp given the observed data at every pixel p ∈ P , and the second

term represents the smoothness energy that forces pixels p and q defined by a set of

interacting pair N (in our case, the neighboring pixels) towards the same label.

The data energy term encoded as terminal link (t-link) between each node to

source (or sink) is assigned as the weighted sum of the log-likelihood computed from

the Gaussian Mixture Model (GMM) of intensity distributions, blood-pool probability

map, and signed distance map obtained from the thresholded blood-pool probability

map:

Dp(fp) = −w1lnPr(Ip|fp) +
w2

1 + e−itr
P (fp) +

w3

1 + e−itr
Dm(fp) (5.2)

where, Pr(Ip|fp) is the likelihood of observing the intensity Ip given that pixel p

belongs to class fp. The log-likelihood for BP and BG are obtained by fitting in-

tensity values within the convex-hull of most recent BP segmentation and outside

the BP probability map thresholded at ThBG to 1- and 2-Gaussian GMM models,

respectively. P (fp) is the probability of pixel p being class fp. The probabilities for

BP and BG are the BP-probability map and its inverse, respectively. Dm(fp) is the

likelihood of pixel p being class fp computed from a signed distance map obtained via

BP-probability map thresholded at ThBP , with the inside regions being positive and

outside regions being negative. This strongly encourages pixels inside and outside

the thresholded BP-probability map to be assigned as BP and BG, respectively. itr

is the iteration number. The weights are assigned such that the contribution of BP

probability map increases with increasing iteration number, reflecting its increasing

reliability as the iteration proceeds.

The smoothness energy term is computed over the links between neighboring nodes

(n-links) and is assigned as a weighted sum of intensity similarity between the pixels

and average probability of the pixels belonging to BP based on the BP probability



www.manaraa.com

115

map:

Vp,q(fp, fq) =

w4 ∗ exp
(
− |Ip−Iq |)

σ

)
+ w5 ∗ exp

(
P (p)+P (q)

2

)
if fp 6= fq

0 if fp = fq

(5.3)

where, w4 and w5 are weights for the intensity similarity term and atlas prior term,

respectively, and P (·) is the probability of a pixel belonging to BP obtained from the

BP probability map.

After assigning appropriate unary and pairwise potentials to the graph, the min-

imum cut is identified using the expansion algorithm [9]. The obtained labeling

minimizes the global energy of the graph and corresponds to the optimal BP/BG

segmentation as shown in Fig. 5.3b.

5.2.5.4 Segmentation Refinement using Intersection-over-Union

Due to the intensity similarity between blood-pool and some background regions,

the raw graph-cut segmentation is sometimes noisy and requires additional processing.

We perform slice-wise refinement via connected-component analysis, such that a single

connected region per slice is retained which maximizes the Intersection-over-Union

(IoU) metric to the BP of closest mid-slice and to the BP probability map thresholded

at ThBP . The refinement starts at mid-slice and then proceeds to the apical/basal

slices. To accommodate for small blood-pool regions in apical slices, the IoU value

is set to 1.0 if one object is completely inside the other. Further, we only retain

the slice segmentations with IoU greater than a predefined threshold ThIou to filter

out small implausible segmentation regions. The BP segmentation result after IoU

based refinement is shown in Fig. 5.3c. The algorithm for IoU based segmenation

refinement is shown in Algorithm 2.
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Algorithm 2: Refining Graph-cut Segmentation Result using IoU

Input: Noisy graph-cut segmentation, SN ; Thresholded BP probability map,

PThBP

Parameters: Intersection-over-Union (IoU) threshold, ThIoU

Output: Refined Segmentation, SR

1 Start at mid-slice and proceed to apical/basal slices ;

2 SR ← zeros(size(SN));

3 slices ← [midSlice, apicalSlices, basalSlices];

4 for i in slices do

5 j ← NearestMidSlice(i);

6 for c in ConnectedComponents(SN [i]) do

7 IoUs [c] ← IoU(SN [i][c],SR [j]);

8 IoUp [c] ← IoU(SN [i][c],PThBP [i]);

9 IoU [c] ← IoUs [c] + IoUp [c]

10 end

11 maxInd ← MaxInd(IoU);

12 if IoU [maxInd] > ThIoU then

13 SR [i] ← SN [i][maxInd]

14 end

15 end
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5.2.5.5 Iterative Segmentation Refinement

The initial global registration of the average intensity atlas to a test patient volume

might not be accurate, hence producing sub-optimal graph-cut segmentation result.

To address this limitation, Otsu thresholding [10] of the region inside the registered

BP probability map thresholded at ThBP yields the approximate BP segmentation

for the first iteration, which is further refined iteratively.

We compute a slice-wise convex-hull for the recently obtained refined graph-cut

segmentation. A 3D thresholded distance map, DmS
Th, is computed from the convex-

hull with the regions inside the segmentation assigned a constant value of 0. Similarly,

a 3D thresholded distance map, Dm
PThBP
Th , is computed from the BP probability map

thresholded at ThBP , PThBP . The distance map Dm
PThBP
Th is registered to DmS

Th using

gradient descent optimizer with mean squared difference (MSD) as the similarity

metric within a mask defined in the apical regions up until the basal slice with non-

zero PThBP . We exclude the basal regions during the registration as they could contain

over-segmented aortic valve with intensity similar to the BP, adversely affecting the

segmentation refinement. The obtained optimum 3D affine transformation is applied

to the BP probability map and hence used to update the graph energy in (5.2) and

(5.3).

The intensity values within the convex-hull of the latest refined graph-cut segmen-

tation is used to update the 1-Gaussian GMM model for BP. Similarly, the intensity

values outside the transformed BP probability map thresholded at ThBG are used to

update the 2-Gaussian GMM model for the BG. The intensity likelihoods obtained

from updated BP and BG GMM models are used to update the Pr(Ip|fp) term of

graph energy in (5.2).

The optimal binary labeling of the graph is obtained via minimum-cut using the

expansion algorithm. The obtained noisy graph-cut segmentation is “cleaned” using

the method described in Algorithm 2 and hence used to update the BP proba-

bility map and the graph energy for the next iteration. This iterative process is
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repeated until the IoU of BP segmentations between consecutive iterations is below

some threshold, Thstop, or maximum number of iterations, itrmax, has been reached.

Fig. 5.3d shows the BP segmentation result obtained after the iterative refinement

process converges in three iterations.

Algorithm 3: Segmentation Refinement using Stocastic Outlier Selection

Input: BP Segmentation after iterative refinement, Sin; Thresholded BP

Probability Map, PThBP

Parameters: Outlier probability threshold, ThSOS; SOS Perplexity, kSOS

Output: Refined BP Segmentation, Sout

1 n— number of segmented slices in Sin;

2 Sout ← Sin;

3 Xn×4 ← ShapeFeatures(Sin);

4 Prn×1 ← SOS(Xn×4);

5 maxInd ← MaxInd(Prn×1);

6 startSlice, endSlice ← StartStop(PThBP );

7 if Prn×1 [maxInd] > ThSOS then

8 if maxInd ≤ startSlice then Sout [ :maxInd ] ← 0;

9 if maxInd ≥ endSlice then Sout [maxInd: ] ← 0;

10 end

5.2.5.6 Segmentation Refinement using Stochastic Outlier Selection

The segmentation result obtained after iterative refinement might contain over-

segmented regions of the aorta or incorrectly segmented apical slices. Hence, we

analyze the shape statistics of the segmented region for all the slices and remove

outlier apical/basal slices.

We extract four shape statistics from the segmented region in each slice:

1) Thinness ratio: 4π×Area
Perimeter2

, measures circularity of the segmented region
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2) Eccentricity: Ratio of focal distance over the major axis length of least square

fitted ellipse

3) Solidity: Ratio of pixels in the region to pixels in its convex hull

4) Extent: Ratio of pixels in the region to pixels in the total bounding box

The Stochastic Outlier Selection (SOS) algorithm [11] computes the probability

of each slice being an outlier based on the affinity matrix obtained from the shape

features. The variance of a data point depends on the density of the neighborhood,

which is set such that each data point has the same number of neighbors. This number

is controlled via the only parameter of SOS, called perplexity (kSOS).

If the slice with maximum probability of being an outlier has a higher probability

than a predefined probability threshold, ThSOS, and belongs to apical/basal region

(determined by the thresholded BP probability map), slices above/below this slice

have a high probability of being an over-segmented aorta/apex region, and hence

are removed to obtain the final BP segmentation, as described in Algorithm 3. As

observed in Fig. 5.3e, over-segmented aorta in the basal region has been removed

after the SOS refinement to obtain the final BP segmentation.

5.3 Implementation Details

The CNN model was implemented in Python using the Keras application pro-

gramming interface (API) [12] running on top of TensorFlow [13]. The programming

environment was setup as a docker3 container for portability and reproducibility. The

system comprised of Intel(R) Xeon(R) CPU X5650 @ 2.67GHz with 12 cores, 96 GB

of system memory, and two 12 GB Nvidia Titan Xp GPUs.

The 4D dataset with 189 different augmentations were saved as 189 shuffled files

(2.8 GB), with each shuffled file containing a randomly augmented volume from all 97

datasets. During training, the files were read ahead and pushed to a queue such that

3http://www.docker.com
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the data generator could generate a random batch of training data without significant

IO delay. The network weights were initialized using the Xavier uniform initializer,

from a uniform distribution within [-L,+L] with L =
√

6
fanin+fanout

, where fanin and

fanout are the number of input and output units in the weight tensor, respectively.

The 97 datasets were randomly split into 79 training, 9 validation, and 9 test sets.

The network was trained for 100 epochs with each epoch comprising of 100 random

shuffled files and requiring 46 minutes on average. The sum of squared difference error

between predicted and ground truth LV center was used as the loss function. The

model yielding the lowest validation loss at the end of an epoch was saved and used

to evaluate the results on the test set. The model requires 1.23 seconds on average

to predict the LV centers for 9 test datasets (2670 SA slices).

The parameters for LV blood-pool segmentation were empirically tuned based on

the validation dataset. For the exhaustive search based image registration, the num-

ber of scaling factors, s, per dimension is set to 5, and the number of z-translations,

t, is set to 3, such that the NCC similarity measure for 53 × 3 = 425 different scale

and translation combinations have to be computed between the test and transformed

average intensity image. We select k = 5 best initial transforms for subsequent regis-

tration and use the transformation producing best NCC similarity to transfer the BP

probability map to a test dataset. The BP and BG thresholds for the BP probability

map are set to ThBP = 0.5 and ThBG = 0.0, respectively. The weights for data

energy term in (5.2) are set to w1 = 10.0, w2 = 2.0, w3 = 15.0, and the weights for

the smoothness energy term in (5.3) are set to w4 = 50.0 and w5 = 50.0. Similarly,

the intensity spread parameter in the smoothness term (5.3) is set to σ = 0.1, as we

rescale the image intensities to a range of 0.0 to 1.0. The threshold for IoU based BP

refinement as defined in Algorithm 2 is set to ThIOU = 0.6. The iterative segmen-

tation refinement is stopped when the IoU between two consecutive segmentations is

greater than Thstop = 0.95 or maximum number of iterations itrmax = 10 has been

reached. Finally, for the segmentation refinement using SOS, the outlier probability
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threshold ThSOS is set to 0.6, and the perplexity parameter, kSOS, is set to number of

slices with BP segmentation subtracted by 2, allowing only few slices to be considered

as an outlier.

5.4 Results

Table 5.1: Mean, Standard Deviation, and Median slice misalignment in pixels before
and after the correction.

Method Before Correction (pixels) After Correction (pixels)

Mean ± Std 3.30± 1.71 2.40± 1.54
Median 3.13 2.07

Figure 5.4: Histogram for misalignment errors before and after the correction.

We computed the mean of the LV center across all the slices in the 3D test vol-

ume. Assuming the slices need to be translated to the mean center point for slice

misalignment correction, we computed the distance of each true LV center point to

the mean and designated it as the initial slice misalignment in the test data. Simi-

larly, the Euclidean distance between the predicted and true LV center points yielded

the residual slice misalignment after the proposed correction. Table 5.1 shows the
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Figure 5.5: Boxplot for misalignment errors before and after the correction. Median
(orange line), Interquartile range (box), and outliers (points outside the whiskers) can
be observed in the plot. The median misalignment error is reduced from 3.20 to 2.14
pixels.

misalignment statistics, Fig. 5.2 shows significant reduction of stair-step artifact

on the 3D reconstructed LV myocardium, Fig. 5.4 shows the histogram of mis-

alignment errors, and Fig. 5.5 shows the box plot for errors, before and after the

misalignment correction. Further, the Kolmogorov-Smirnov statistics on the errors

before and after misalignment correction was able to reject the null hypothesis that

the two error samples come from the same distributions with a p-value of 1.617e−76.

Hence, the proposed CNN regression architecture was successful in reducing the slice

misalignment error statistically significantly from median error of 3.13 to 2.07 pixels.

Table 5.2: Evaluation of the end-diastole blood-pool segmentation results against the
ground truth blood-pool segmentation using Jaccard, Dice, Hausdorff Distance and
Mean Surface Distance measures for the Validation and Test datasets.

Dataset Jaccard Dice Hausdorff Distance
(mm)

Mean Surface Dis-
tance (mm)

Test Set 0.829± 0.077 0.904± 0.048 9.446± 4.936 0.560± 0.566
Validation Set 0.825± 0.074 0.902± 0.045 9.290± 2.088 0.371± 0.213

On average, the proposed algorithm converges in 3 iterative refinement steps and

requires ∼ 2.2 mins to segment a 3D test volume. The obtained segmentation re-



www.manaraa.com

123

Table 5.3: Evaluation of the end-diastole blood-pool segmentation results against
the ground truth blood-pool segmentation using Dice overlap shown for several pub-
lished methods extracted from the corresponding manuscripts. Note the evaluation
is performed on different datasets.

Method Dice

Queiros et al.[14] 0.93± 0.03
Proposed 0.90± 0.05

Eslami et al.[15] 0.83± 0.03
Grosgeorge et al.[16] 0.82± 0.01

sults were validated against the blood-pool segmentation extracted from the pro-

vided ground-truth myocardium segmentation as shown in Fig. 5.6. We computed

the Jaccard and Dice similarity measures along with the mean surface distance and

Hausdorff distance for both the validation and the test datasets as shown in Ta-

ble 5.2. Although the parameters for the algorithm are tuned using the validation

dataset, the proposed method generalizes well in the test dataset with similar results.

Figure 5.6: Blood-pool segmentation result obtained from the proposed method com-
pared against: a) Ground-truth myocardium segmentation; b) Blood-pool segmenta-
tion extracted from the myocardium. The ground-truth, obtained segmentation re-
sult, and the intersection regions are shown in red, blue, and white, respectively. Due
to the difficulty of obtaining blood-pool segmentation from the partial myocardium
slices, these slices are assumed to not contain blood-pool, hence significantly affecting
the blood-pool segmentation evaluation.
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Furthermore, Table 5.3 clearly shows that the proposed method features an equiv-

alent performance to the other published methods. Nevertheless, since our proposed

method and the previously published methods were evaluated on different datasets,

this table provides a holistic evaluation of the described method.

5.5 Discussion, Conclusion, and Future Work

We presented a CNN based regression architecture to predict the LV blood-pool

center from the SA cine MR slices. The predicted LV center points for all slices

were translated to image center to reduce the median slice-misalignment from 3.13

to 2.07 pixels. As our algorithm in its current form requires minimal preprocessing,

specifically resampling the SA images to a spacing of 1.5625× 1.5625 mm and center

cropping/zero-padding to a common resolution of 192× 192 pixels, we obtain a large

number of network parameters at the fully connected layers, requiring a large train-

ing dataset. We plan to crop an ROI from the original SA images using the Fourier

first harmonics information obtained from the image sequence throughout the car-

diac cycle, such that the CNN network parameters would be reduced and possibly

yield better LV alignment. Furthermore, we will be exploring a segmentation-based

approach, where we predict a Gaussian kernel centered at the LV center for misalign-

ment correction.

After obtaining a coherent 3D volume from the slice-misalignment correction,

we performed a full 3D segmentation of the LV blood-pool by exploiting the 3D

context information using the LV atlas. The 6-neighborhood graph structure ensured

smoothness between slice segmentations. Since image registration is highly dependent

on a good initialization, we perform an exhaustive search and refinement to obtain

the best possible registration result between the average intensity atlas and the test

patient volume. Any initial misalignments are further corrected by a graph-cut based

iterative refinement process. In addition, due to the intensity similarity of the aortic
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region in basal slices to the blood-pool region, basal slices could be over-segmented,

and are removed if their segmented shape is significantly different from that of the

other slices using the Stochastic Outlier Selection algorithm.

Despite the difficulty of obtaining the gold-standard blood-pool segmentation from

the provided ground-truth myocardium segmentation in the partial myocardium re-

gions, our segmentation algorithm is able to obtain a mean dice similarity metric of

over 90%, with mean surface distance of ∼ 0.5 mm, and Hausdorff distance of ∼ 9.4

mm. As there would be no gold-standard blood-pool in the partial myocardium slices,

it significantly affects the similarity metrics and surface distance measurements. Fur-

thermore, although the current algorithm parameters are tuned empirically using a

validation dataset, we plan to do an extensive study of their impact in the final seg-

mentation result. We also plan to extend our work for myocardium segmentation

throughout the cardiac cycle.
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Chapter 6

Left Ventricle Segmentation and

Quantification from Cardiac Cine

MR Images via Multi-task

Learning

Segmentation of the left ventricle and quantification of various cardiac contractile

functions is crucial for the timely diagnosis and treatment of cardiovascular diseases.

Traditionally, the two tasks have been tackled independently. Here we propose 1 a

convolutional neural network based multi-task learning approach to perform both tasks

simultaneously, such that, the network learns better representation of the data with

improved generalization performance. Probabilistic formulation of the problem enables

learning the task uncertainties during the training, which are used to automatically

compute the weights for each task.

1This chapter is adapted from:
Dangi S., Yaniv Z., Linte C.A. (2019) Left Ventricle Segmentation and Quantification from Cardiac
Cine MR Images via Multi-task Learning. In: Pop M. et al. (eds) Statistical Atlases and Com-
putational Models of the Heart (STACOM). Springer Lect Notes Comput Sci. Vol. 11295. Pp.:
21-31.
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6.1 Introduction

Recent success of deep learning techniques [1] in high level computer vision, speech

recognition, and natural language processing applications has motivated their use in

medical image analysis. Long et al. [2] were the first to propose a fully convolutional

network (FCN) for semantic image segmentation by adapting the contemporary clas-

sification networks fine-tuned for the segmentation task, obtaining state-of-the-art

results. Several modifications to the FCN architecture and various post-processing

schemes have been proposed to improve the semantic segmentation results as sum-

marized in [3]. Notably, the U-Net architecture [4] with data augmentation has been

very successful in medical image segmentation.

While segmentation indirectly enables the computation of various cardiac indices,

direct estimation of these quantities from low-dimensional representation of the image

have also been proposed in the literature [5–7]. However, these methods are less inter-

pretable and the correctness of the produced output is often unverifiable, potentially

limiting their clinical adoption.

Here we propose a CNN based multi-task learning approach to simultaneously

perform both the LV segmentation and cardiac index estimation simultaneously, such

that these related tasks regularize the network, hence improving the network gener-

alization performance. Furthermore, our method increases the interpretablity of the

output cardiac indices, as the clinicians can infer its correctness based on the quality

of produced segmentation result.

6.2 Methodology

Traditionally, the segmentation of the LV and quantification of the cardiac indices

have been performed independently. However, due to a close relation between the two

tasks, we identified that learning a CNN model to perform both tasks simultaneously

is beneficial in two ways: 1) it forces the network to learn features important for
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both tasks, hence, reducing the chances of over-fitting to a specific task, improving

generalization; 2) the segmentation results can be used as a proxy to identify the

reliability of the obtained cardiac indices, and also to perform regional cardiac analysis

and surgical planning.

6.2.1 Data Preprocessing and Augmentation

This study employed 97 de-identified cardiac MRI image datasets from patients

suffering from myocardial infarction and impaired LV contraction available as a part

of the STACOM Cardiac Atlas Segmentation Challenge project [8, 9] database2.

Cine-MRI images in short-axis and long-axis views are available for each case. The

semi-automated myocardium segmentation provided with the dataset served as gold-

standard for assessing the proposed segmentation technique. The dataset was divided

into 80% training and 20% testing for five-fold cross-validation.

The physical pixel spacing in the short-axis images ranged from 0.7031 to 2.0833

mm. We used SimpleITK [10] to resample all images to the most common spacing

of 1.5625 mm along both x- and y-axis. The resampled images were center cropped

or zero padded to a common resolution of 192 × 192 pixels. We applied two trans-

formations, obtained from the combination of random rotation and translation (by

maximum of half the image size along x- and y-axis), to each training image for data

augmentation.

6.2.2 MTL using Uncertainty-based Loss Weighting

Following [11, 12], we model the likelihood for a segmentation task as the squashed

and scaled version of the model output through a softmax function: where, σ is

a positive scalar, equivalent to the temperature, for the defined Gibbs/Boltzmann

distribution. The magnitude of σ determines how uniform the discrete distribution

2http://www.cardiacatlas.org
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is, and hence relates to the uncertainty of the prediction measured in entropy. The

log-likelihood for the segmentation task can be written as:

log p(y = c|fW (x), σ)

=
1

σ2
fW
c (x)− log

∑
c′

exp

(
1

σ2
fW
c′ (x)

)
=

1

σ2
(fW
c (x)− log

∑
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fW
c′ (x)

)
−

log

∑
c′ exp

(
1
σ2
2
fW
c′ (x)

)
(
∑

c′ exp (fW
c′ (x)))

1

σ22

≈ 1

σ2
log Softmax

(
y,fW (x)

)
− logσ (6.1)

where fW
c (x) is the c’th element of the vector fW (x). In the last step, a simplifying

assumption 1
σ

∑
c′ exp

(
1
σ2f

W
c′ (x)

)
≈
(∑

c′ exp
(
fW
c′ (x)

)) 1
σ2 , which becomes an equal-

ity when σ → 1, has been made, resulting in a simple optimization objective with

improved empirical results [11, 12].

Similarly, for the regression task, we define our likelihood as a Lapacian distribu-

tion with its mean and scale parameter given by the neural network output:

p(y|fW (x), σ) =
1

2σ
exp

(
−|y − fW (x)|

σ

)
(6.2)

The log-likelihood for regression task can be written as:

log p(y|fW (x), σ) ≈ − 1

σ
|y − fW (x)| − logσ (6.3)

where σ is the neural networks observation noise parameter — capturing the noise

in the output. A constant term has been removed for simplicity, as it does not affect

the optimization.

For a network with two outputs — continuous output y1 modeled with a Laplacian

likelihood, and a discrete output y2 modeled with a softmax likelihood — the joint
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loss is:

L(W1,W2, σ1, σ2)

= −log p(y1,y2 = c|fW1(x),fW2(x), σ1, σ2)

= −log (p(y1|fW1(x), σ1) · p(y2 = c|fW2(x), σ2))

≈ 1

σ1

L1(W1) +
1

σ2
2

L2(W2) + logσ1 + logσ2

(6.4)

where L1(W1) = |y1 − fW1(x)| is the MAD loss of y1 and

L2(W2) = −log Softmax(y2,f
W2(x)) is the cross-entropy loss of y2. To arrive at

Eq. 6.4, the two outputs are assumed independent given the representation learned

by the network. During the training, the joint likelihood loss L(W1,W2, σ1, σ2) is

optimized with respect to W1, W2 as well as σ1, and σ2, yielding satisfactory results

in practice. Alternatively, learning the tasks relationship via covariance matrix, as

shown by [7] for a fully-connected network, might slightly improve the performance

in expense of higher computational cost required to optimize the resulting complex

optimization objective.

From Eq. 6.4, we can observe that the losses for individual tasks are weighted by

the inverse of their corresponding uncertainties (σ1, σ2) learned during the training.

Hence, tasks with higher uncertainty will be weighted less, and vice versa. Further-

more, the uncertainties cannot grow too large due to the penalty imposed by the last

two terms in (Eq. 6.4). In practice, the network is trained to predict the log variance,

s := logσ, for numerical stability and avoiding any division by zero, such that, the

positive scale parameter, σ, can be computed via exponential mapping exp(s).

6.2.3 Network Architecture

In this work, we adapt the U-Net architecture [4], highly successful in medical

image segmentation, to perform an additional task of myocardium area estimation

as shown in Fig. 6.1. The segmentation and regression paths are split at the final

up-sampling and concatenation layer. The final feature map in the segmentation
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Figure 6.1: Modified U-Net architecture for multi-task learning. The segmentation
and regression tasks are split at the final up-sampling and concatenation layer. The
final feature map in the segmentation path is passed through a sigmoid layer to obtain
a per-pixel image segmentation. Similarly, the final feature map in the regression path
is down-sampled (by max-pooling) to 1/4th of its size and fed to a fully-connected
layer to generate a single regression output. The logarithm of the task uncertainties
(logσ1, logσ2) are set as network parameters and are encoded in the loss function
(6.4), hence learned during the training.

path is passed through a sigmoid layer to obtain a per-pixel image segmentation.

Similarly, the regression output is obtained by down-sampling the final feature map

in the regression path by 1/4th of its size and passing it through a fully-connected

layer. The logarithm of the task uncertainties (logσ1, logσ2) added as the network

parameters are used to construct the loss function (6.4), and are learned during the

training. Note that we train the network to predict the log uncertainty s = log(σ)
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due to its numerical stability and the positivity constraint imposed on the computed

uncertainty via exponentiation, σ = exp(s).

6.3 Results

Due to the availability of relatively large dataset of cine MR images, it is possible to

train our network from random initialization as opposed to initializing it with weights

obtained from pre-trained networks. Hence, the network was initialized with the

Kaiming uniform [13] initializer and trained for 50 epochs using RMS prop optimizer

with a learning rate of 0.001 (decayed by 0.95 every epoch) in PyTorch3. The best

performing network, in terms of the Dice overlap between the obtained and gold-

standard segmentation, in the test set, was saved and used for evaluation.

The network training required 9 minutes per epoch on average using a 12GB

Nvidia Titan Xp GPU. It takes 0.663 milliseconds on average to process a slice during

testing. The log uncertainties learned for the segmentation and regression tasks during

training are −3.9 and 3.45, respectively, which correspond to weighting the cross-

entropy and mean absolute difference (MAD) loss by a ratio of 1556:1. Note that the

scale for cross-entropy loss is 10−2, whereas that for MAD loss is 102.

The 2D segmentation results are stacked to form a 3D volume, and the largest

connected component is selected as the final myocardium segmentation. The my-

ocardium segmentation obtained for end-diastole, end-systole, and all cardiac phases

from the proposed multi-task network (MTN) and from the baseline U-Net architec-

ture (without the regression task) are both assessed against the gold-standard seg-

mentation provided with the dataset as part of the challenge, using four traditionally

employed segmentation metrics — Dice Index, Jaccard Index, Mean surface distance

(MSD), and Hausdorff distance (HD) — summarized in Table 6.1. Note that the

myocardium dice coefficient is higher for end-systole phase where the myocardium is

3https://github.com/pytorch/pytorch
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Table 6.1: Evaluation of the segmentation results obtained from the baseline U-Net
(UNet) architecture and the proposed multi-task network (MTN) against the provided
gold-standard myocardium segmentation using — Dice Index, Jaccard Index, Mean
Surface Distance, and Hausdorff Distance.

Assessment
Metric

End-Diastole End-Systole All Phases
UNet MTN UNet MTN UNet MTN

Dice Index
0.836±
0.036

0.837±
0.038

0.850±
0.033

0.849±
0.036

0.847±
0.035

0.849±
0.036

Jaccard Index
0.719±
0.052

0.721±
0.054

0.740±
0.048

0.739±
0.053

0.736±
0.050

0.739±
0.053

Mean Surface
Distance (mm)

0.318±
0.089

0.286±
0.087

0.299±
0.095

0.274±
0.090

0.305±
0.088

0.274±
0.083

Hausdorff Dis-
tance (mm)

13.582±
4.337

13.364±
4.108

13.083±
3.630

13.355±
3.861

13.211±
4.212

13.233±
3.810

thickest.

The Kolmogorov-Smirnov test shows that the difference in distributions for Dice,

Jaccard and MSD metrics between the proposed multi-task network and baseline U-

Net architecture are statistically significant with p-values: 2.156e−4, 2.156e−4, and

6.950e−34, respectively. However, since the segmentation is evaluated on a large

sample of 2191 volumes across five-fold cross validation, the p-values quickly go to zero

even for slight difference in distributions being compared, representing no practical

significance [14]. Hence, we computed the 99% confidence interval for the mean value

of each segmentation metric based on 1000 bootstrap re-sampling with replacement,

as shown in Fig. 6.2. As evident from Fig. 6.2, Dice, Jaccard and HD metrics

are statistically similar, whereas the reduction in MSD for the proposed multi-task

network compared to the baseline U-Net architecture is statistically significant.

In addition to obtaining the myocardium area from the regression path of the

proposed network, it can also be computed indirectly from the obtained myocardium

segmentation. Hence, we compute and evaluate the myocardium area estimated from
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Figure 6.2: Mean and 99% confidence interval for (a) Dice Coefficient, (b) Jaccard
Coefficient, (c) Mean Surface Distance (mm), and (d) Hausdorff Distance (mm),
for baseline U-Net and the proposed MTN architecture across all cardiac phases.
Confidence interval is obtained based on 1000 bootstrap re-sampling with replacement
for 2191 test volumes across five-fold cross-validation.

three different sources: (a) regression path of the MTN, (b) segmentation obtained

from the MTN, and (c) segmentation obtained from the baseline U-Net model. Fig.

6.3 shows the myocardium area obtained from these three methods for all phases

of the cardiac cycle plotted against the ground-truth myocardium area estimated

from the gold-standard myocardium segmentation provided as part of the challenge

data. We can observe a linear relationship between the computed and gold-standard

myocardium areas, and the corresponding correlation coefficients for the methods

(a), (b), and (c) are 0.9466, 0.9565, 0.9518, respectively. Hence the myocardium area

obtained from MTN segmentation is closest to the gold-standard segmentation.

Further, we computed the MAD between the ground-truth myocardium area and

the area estimated by each of the three methods for end-diastole, end-systole, and all
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Figure 6.3: The myocardium area computed from A) regression path of the proposed
multi-task network, B) segmentation obtained from the proposed multi-task network,
C) segmentation obtained from the baseline U-Net model, plotted against the corre-
sponding myocardium area obtained from the provided gold-standard segmentation
for all cardiac phases. The best fit line is shown in each plot. The correlation coeffi-
cients for A, B, and C are 0.9466, 0.9565, 0.9518, respectively

Table 6.2: Mean absolute difference (MAD), in mm2, between the myocardium area
obtained from the provided gold-standard segmentation and the results computed
from: (a) the regression path of the proposed multi-task network, (b) segmentation
obtained from the proposed multi-task network, and (c) segmentation obtained from
the baseline U-Net model, for end-diastole, end-systole, and all cardiac phases, sub-
divided into apical, mid, and basal regions of the heart.

Cardiac
Regions

End-Diastole End-Systole All Phases
Reg-
MTN

Seg-
MTN

Seg-
UNet

Reg-
MTN

Seg-
MTN

Seg-
UNet

Reg-
MTN

Seg-
MTN

Seg-
UNet

All
201±
199

174±
209

203±
221

211±
209

173±
203

187±
204

206±
198

170±
199

193±
208

Apical
185±
180

187±
204

194±
186

193±
199

190±
226

185±
185

184±
183

181±
210

187±
189

Mid
190±
172

141±
132

179±
142

228±
194

160±
151

174±
135

212±
178

149±
132

176±
141

Basal
250±
269

252±
331

282±
368

193±
241

186±
267

216±
312

213±
248

210±
289

237±
319

cardiac phases (for 26664 slices across five-fold cross validation). For the regional anal-

ysis, slices in the ground-truth segmentation after excluding two apical and two basal
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Table 6.3: Mean absolute difference (MAD), in mm2, between the myocardium
area obtained from the provided gold-standard segmentation and the results com-
puted from: (a) Indices-Net [6], (b) Deep Multitask Relationship Learning Network
(DMTRL) [7], and (c) segmentation obtained from proposed multi-task network, for
mid-slice of the heart. The numbers for (a) and (b) are obtained from Table 1 in [7]
evaluated on a different dataset.

Methods MAD mid-slice (mm2)
Indices-Net [6] 223± 193
DMTRL [7] 189± 159
Proposed Seg-MTN 149± 132

slices are considered as mid-slices. Table 6.2 summarizes the mean and standard de-

viation for the computed MADs. Box-plots (outliers removed for clarity) comparing

the three methods for different regions of the heart throughout the cardiac cycle are

shown in Fig. 6.4a. The MAD in myocardium area estimation of 206 ± 198 mm2

obtained from the regression output of the proposed method is similar to the results

presented in [6]: 223 ± 193 mm2. Furthermore, the MAD in mid-slice myocardium

area computed from the segmentation obtained from our proposed multi-task network

is lower than that reported on [6, 7] as shown in Table 6.3, while acknowledging the

limitation that the study in [6, 7] was conducted on a different dataset than our

study. Moreover, while the regression output of the proposed network yields good

estimates of the myocardial area, the box-plot in Fig. 6.4a suggests that even fur-

ther improved myocardial area estimates can be obtained from a segmentation based

method, provided that the quality of the segmentation is good.

Lastly, we computed the 99% confidence interval for the mean value of the my-

ocardium area MAD based on 1000 bootstrap re-sampling with replacement, as shown

in Fig. 6.4b. This confirms that the myocardium area estimated from the segmen-

tation output of the proposed multi-task network is significantly better than that

obtained from the regression output; however, there is no statistical significance be-

tween other methods. Furthermore, we can observe the variability in MAD is highest
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(a) Box-plot for the mean absolute difference (MAD).

(b) Mean and 99% confidence interval for the mean absolute difference (MAD).

Figure 6.4: (a) Box-plot (outliers removed for clarity) and (b) Mean and 99% con-
fidence interval, for the mean absolute difference (MAD) between the myocardium
area obtained from the provided gold-standard segmentation and the results obtained
from: (1) the regression path of the proposed multi-task network, (2) segmentation
obtained from the proposed multi-task network, and (3) segmentation obtained from
the baseline U-Net model. Confidence intervals are obtained based on 1000 bootstrap
re-sampling with replacement.

for the basal slices, followed by apical, and mid slices.
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6.4 Discussion, Conclusion, and Future Work

We presented a multi-task learning approach to simultaneously segment and quan-

tify myocardial area. We adapt the U-Net architecture, highly successful in medical

image segmentation, to perform an additional regression task. The best location to

incorporate the regression path into the network is a hyper-parameter, tuned em-

pirically. Moreover, we found that adding the regression path in the bottleneck or

intermediate decoder layers is detrimental for the segmentation performance of the

network, likely due to high influence of the skip connections in the U-Net architecture.

Myocardium area estimates obtained from the regression path of the proposed net-

work are similar to the direct estimation-based results found in the literature. Further,

our experiments suggest that segmentation-based myocardium area estimation is su-

perior to that obtained from a direct estimation-based method. However, it should

be noted that it is easier to obtain the reference clinical index for direct-estimation,

compared to the reference per-pixel segmentation required for segmentation-based

method. Lastly, the myocardium segmentation obtained from our method is at least

as good as the segmentation obtained from the baseline U-Net model.

To test the generalization performance of the proposed multi-task network, we

plan to evaluate the network performance using a lower number of training images.

Similarly, we plan to extend this work to segment left ventricle myocardium, blood-

pool, and right ventricle, and regress their corresponding areas using the Automated

Cardiac Diagnosis Challenge (ACDC)4 2017 dataset.
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Chapter 7

A Distance Map Regularized CNN

for Cardiac Cine MR Image

Segmentation

In recent years, convolutional neural networks have been the dominant algorithm

for cardiac MR image segmentation. This study 1 proposes a multi-task learning

(MTL)-based regularization of a convolutional neural network (CNN), where the main

task of semantic segmentation is accompanied by the simultaneous, auxiliary task of

pixel-wise distance map regression. The proposed distance map regularizer is a decoder

network added to the bottleneck layer of an existing CNN architecture, facilitating the

network to learn robust global features. The regularizer block is removed after training,

so that the original number of network parameters does not change. We show that

the proposed regularization method improves both binary and multi-class segmentation

performance over the corresponding state-of-the-art CNN architectures.

1This chapter is adapted from:
Dangi, S., Linte, C.A. and Yaniv, Z. (2019), A distance map regularized CNN for cardiac cine MR
image segmentation. Med. Phys., 46: 5637-5651. doi:10.1002/mp.13853

144



www.manaraa.com

145

7.1 Introduction

Fully convolutional networks (FCNs) are currently the dominant approach for

image segmentation. Long et al. [1] proposed the first fully convolutional network

(FCN) for semantic image segmentation, exploiting the capability of Convolutional

Neural Networks (CNNs) [2–4] to learn task-specific hierarchical features in an end-to-

end manner. However, their initial adoption in the medical domain was challenging,

due to the limited availability of medical imaging data and associated costly manual

annotation. These challenges were later circumvented by patch-based training, data

augmentation, and transfer learning techniques [5, 6].

Specifically, in the context of cardiac image segmentation, Tran [7] adapted a FCN

architecture for segmentation of various cardiac structures from short-axis MR images.

Similarly, Poudel et al. [8] proposed a recurrent FCN architecture to leverage inter-

slice spatial dependencies between the 2D cine MR slices. Avendi et al. [9] reported

improved accuracy and robustness of the LV segmentation by using the output of a

FCN to initialize a deformable model. Further, Oktay et al. [10] pre-trained an auto-

encoder network on ground-truth segmentations and imposed anatomical constraints

into a CNN network by adding l2-loss between the auto-encoder representation of

the output and the corresponding ground-truth segmentation. Several modifications

to the FCN architecture and various post-processing schemes have been proposed to

improve the semantic segmentation results as summarized in [11].

To improve the generalization performance of neural networks, various regular-

ization techniques have been proposed. These include parameter norm penalty (e.g.

weight decay [12]), noise injection [13], dropout [14], batch normalization [15], ad-

versarial training [16], and multi-task learning (MTL) [17]. However, norm penalty,

noise injection, dropout, and batch normalization are mostly employed to prevent

a network from overfitting to the training set. Similarly, adversarial training is fo-

cused on improving adversarial robustness of the network to prevent erroneous output
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for small perturbations of the input. Hence, to achieve the goal of improving both

the network accuracy and its generalization performance, in this work, we focus on

MTL-based network regularization.

When a network is trained on multiple related tasks, the inductive bias provided

by the auxiliary tasks causes the model to prefer a hypothesis that explains more

than one task. This helps the network ignore task-specific noise and hence focus on

learning features relevant to multiple tasks, improving the generalization performance

[17]. Furthermore, MTL reduces the Rademacher complexity [18] of the model (i.e.

its ability to fit random noise), hence reducing the risk of overfitting. An overview of

MTL applied to deep neural networks can be found in [19].

MTL has been widely employed in computer vision problems due to the similarity

between various tasks being performed. A FCN architecture with a common en-

coder and task specific decoders was proposed in [20] to perform joint classification,

detection, and semantic segmentation, targeting real-time applications such as au-

tonomous driving. A similar single-encoder-multiple-decoder architecture described

in [21] performs semantic segmentation, depth regression, and instance segmentation,

simultaneously. The architecture was further expanded by [22] to automatically learn

the weights for each task based on its uncertainty, obtaining state-of-the-art results.

In the context of medical image analysis, Moeskops et al. [23] demonstrated the

use of MTL for joint segmentation of six tissue types from brain MRI, the pectoral

muscle from breast MRI, and the coronary arteries from cardiac Computed Tomog-

raphy Angiography (CTA) images, with performance equivalent to networks trained

on individual tasks. Similarly, Valindria et al. [24] employed a MTL framework to

improve the performance for multi-organ segmentation from CT and MR images, ex-

ploring various encoder-decoder network architectures. Specific to the cardiac MR

applications, Xue et al. [25] proposed a network capable of learning multi-task re-

lationship in a Bayesian framework to estimate various local/global LV indices for

full quantification of the LV. Similarly, Dangi et al. [26] performed joint segmenta-
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tion and quantification of the LV myocardium using the learned task uncertainties

to weigh the losses, improving upon the state-of-the-art results. Most of these MTL

methods in medical image analysis aim to perform various clinically relevant tasks

simultaneously. However, the focus of this work is on improving the segmentation

performance of various FCN architectures using MTL as a network regularizer.

We propose to use the rich information available in the distance map of the seg-

mentation mask as an auxiliary task for the image segmentation network. Since each

pixel in the distance map represents its distance from the closest object boundary,

this representation is redundant and robust compared to the per-pixel image label

used for semantic segmentation. Furthermore, the distance map represents the shape

and boundary information of the object to be segmented. Hence, training the seg-

mentation network on the additional task of predicting the distance map is equivalent

to enforcing shape and boundary constraints for the segmentation task.

Related work to ours include [27], which take an image and its semantic segmen-

tation as input and predict the distance transform of the object instances, such that,

thresholding the distance map yields the instance segmentation. Similarly, [28] rep-

resent the boundary of the object instances using a truncated distance map, which is

used to refine the instance segmentation result. However, unlike these methods, our

goal is not to perform instance segmentation, but to refine the semantic segmentation

result using the distance map as an auxiliary task. The most closely related work to

ours is presented in [29] for segmentation of building footprints from satellite images

using a MTL framework. In their study, the truncated distance map is predicted

at the end of the decoder network and is further used to refine the boundary of the

predicted segmentation, resulting in increased model complexity. Unlike that work,

we impose a global shape constraint at the bottleneck layer of FCN architectures,

using MTL as a network regularizer without increasing the model complexity. The

proposed model is customized towards cardiac MRI image segmentation, as we ac-

commodate for slices containing no foreground pixels (in apical and basal regions).
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Furthermore, we demonstrate better generalization performance of the proposed net-

work with improved cross-dataset segmentation results.

Contributions: In this work, we propose to impose shape and boundary con-

straints in a CNN framework to accurately segment the heart chambers from cardiac

cine MR images. We impose soft-constraints by including a distance map prediction as

an auxiliary task in a MTL framework. We extensively evaluate our proposed model

on two publicly available cardiac cine MRI datasets. We demonstrate that the addi-

tion of a distance map regularization block improves the segmentation performance

of three FCN architectures, without increasing the model complexity and inference

time. We employ a task uncertainty-based weighing scheme to automatically learn

the weights for the segmentation and distance map regression tasks during training,

and show that this method improves segmentation performance over the fixed equal-

weighting scheme. Additionally, we show that the proposed regularization technique

improves the segmentation performance in the challenging apical and basal slices, as

well as across several different pathological heart conditions. This improvement is

also reflected on the computed clinical indices important for cardiac health diagnosis.

Finally, we demonstrate better generalization ability using the proposed regulariza-

tion technique with significantly improved cross-dataset segmentation performance,

without tuning the network to a new data distribution.

7.2 Methods and Materials

7.2.1 CNN for Semantic Image Segmentation

Let x = {xi ∈ IR, i ∈ S} be the input intensity image and y = {yi ∈ L, i ∈ S}

be the corresponding image segmentation, with C = {0, 1, 2, ..., C − 1} representing

a set of C class labels, and S representing the image domain. The task of a CNN

based segmentation model, with weights W , is to learn a discriminative function
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Figure 7.1: Baseline FCN architectures and their simplified block representation.
The input image is passed through several convolution, rectified linear unit (ReLU)
non-linearity, and down-sampling operations during encoding. This encoded repre-
sentation is passed through several convolution, ReLU non-linearity, and up-sampling
operations during decoding, such that, the final output has the same spatial resolu-
tion as the input. (a) SegNet Architecture: max-pooling operation is used for down-
sampling, such that the location of the pooled features (i.e. pooling indices) are saved;
these pooling-indices are later used to map the features back in their original location
during up-sampling; (b) UNet Architecture: skip connections from encoder to decoder
layers at different resolutions are added for better flow of information; deconvolution
filters are learned for up-sampling the feature maps. Simplified representations of:
(c) SegNet Architecture, (d) UNet Architecture, and (e) USegNet Architecture, using
both skip-connections as well as the pooling indices for up-sampling.

fW (·) that models the underlying conditional probability distribution p(y|x). The

output of a CNN model is passed through a softmax function to produce a probability

distribution over the class labels, such that, the function fW (·) can be learned by

maximizing the likelihood:

p(y = c|fW (x)) = Softmax(fW
c (x)) =

exp
(
fW
c (x)

)∑
c′∈L exp

(
fW
c′ (x)

) (7.1)

where fW
c (x) represents the c’th element of the vector fW (x). In practice, the

negative log-likelihood −log(p(y|fW (x))) is minimized to learn the optimal CNN

model weights, W . This is equivalent to minimizing the cross-entropy loss of the
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ground-truth segmentation, y, with respect to the softmax of the network output,

fW (x).

A typical FCN architecture (Fig. 7.1) for image segmentation consists of an

encoder and a decoder network. The encoder network includes multiple pooling

(max/average pooling) layers applied after several convolution and non-linear activa-

tion layers (e.g. Rectified linear unit (ReLU) [30]). It encodes hierarchical features

important for the image segmentation task. To obtain per-pixel image segmentation,

the global features obtained at the bottleneck layer need to be up-sampled to the

original image resolution using the decoder network. The up-sampling filters can ei-

ther be fixed (e.g. nearest-neighbor or bilinear upsampling), or can be learned during

the training (deconvolutional layer). The final output of a decoder network is passed

to a softmax classifier to obtain a per-pixel classification.

In a SegNet [31] (Fig. 7.1a) architecture, the location of feature maps during

down-sampling (i.e. pooling indices) are saved during encoding, such that the decoder

produces sparse feature maps by up-sampling its inputs using these pooling indices.

These sparse feature maps are then convolved with a trainable filter bank to obtain

dense feature maps, and are finally passed through a softmax classifier to produce

per-pixel image segmentation. Since the decoder in the SegNet architecture uses only

the global features obtained at the bottleneck layer of the encoder, the high frequency

details in the segmentation are lost during the up-sampling process.

The U-Net architecture [32] (Fig. 7.1b) introduced skip connections, by concate-

nating output of encoder layers at different resolutions to the input of the decoder

layers at corresponding resolutions, hence preserving the high frequency details impor-

tant for accurate image segmentation. Furthermore, the skip connections are known

to ease the network optimization [33] by introducing multiple paths for backpropa-

gation of the gradients, hence, mitigating the vanishing/exploding gradient problem.

Similarly, skip connections also allow the network to learn lower level details in the

outer layers and focus on learning the residual global features in the deeper encoder
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Figure 7.2: Distance map regularizer added to the bottleneck layer. The number of
distance map channels is one (1) fewer than the number of classes. Segmentation
networks optionally use the pooling indices (yes/no) and skip-connections (yes/no),
shown by dashed lines, during decoding: (a) DMR-SegNet: pooling indices (yes),
skip connections (no); (b) DMR-USegNet: pooling indices (yes), skip connections
(yes); and (c) DMR-UNet: pooling indices (no), skip connections (yes). Uncertainties
associated with each task — S1 corresponding to the semantic segmentation and
S2 corresponding to the pixel-wise distance map regression are also predicted, then
subsequently used to scale the corresponding losses during network training.

layers. Hence, the U-Net architecture is able to produce excellent segmentation re-

sults using limited training data with augmentation, and has been extensively used

in medical image segmentation.

We observed that learned deconvolution filters in the original U-Net architecture

can be replaced by a SegNet-like decoder to form a hybrid architecture with reduced

network parameters. We refer to this modified architecture as U-SegNet (Fig 7.1e)

throughout this chapter, and use it as one of the baseline FCN architectures.

7.2.2 Distance Map Regularization Network

The distance map of a binary segmentation mask can be obtained by computing

the Euclidean distance of each pixel from the nearest boundary pixel [34]. This
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representation provides rich, redundant, and robust information about the boundary,

shape, and location of the object to be segmented. For a binary segmentation mask,

where Ω = {xi : yi = 1, i ∈ S} is the set of foreground pixels, ∂Ω represent the

boundary pixels, and d(·, ·) is the Euclidean distance between any two pixels, the

truncated signed distance map, D(x), is computed as:

D(xi) =


d(xi, ∂Ω) if xi ∈ Ω,Ω /∈ Ø

−min(d(xi, ∂Ω), T ) if xi /∈ Ω,Ω /∈ Ø

−T if Ω ∈ Ø

(7.2)

where,

d(xi, ∂Ω) = min
qi∈∂Ω

d(xi, qi)

is the minimum distance of pixel xi ∈ x from the boundary pixels qi ∈ ∂Ω. We trun-

cate the signed distance map at a predefined distance threshold, −T , hence assigning

this maximum negative distance to the slices not containing any foreground pixels

(i.e. Ω ∈ Ø), indicating all pixels in the slice are far from the foreground (typically

in the apical/basal regions of cardiac cine MR images).

The distance map regularization network is a SegNet-like decoder network, up-

sampling the feature maps obtained at the bottleneck layer of the encoder to the

size of the input image, with the number of output channels equal to the number of

foreground classes (i.e. C − 1). For example, for a four-class segmentation problem

(C = 4): background, RV blood-pool, LV myocardium, and LV blood-pool, the

regularization network has three output channels, predicting the truncated signed

distance maps (Eq. 7.2) computed from the binary masks of the foreground classes:

RV bood-pool, LV myocardium, and LV blood-pool.

Fig. 7.2 shows the regularization network added to the bottleneck layer of existing

FCN architectures. Network training loss is the weighted sum of the cross-entropy loss

for segmentation and the mean absolute difference (MAD) loss between the predicted

and the reference distance maps. The network also predicts two scalars, uncertainties
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associated with each task, which are subsequently used to weigh the two losses as

described in section 7.2.3. Since our goal is to perform semantic segmentation we do

not need the distance map prediction at inference time. Therefore, we remove the

regularization block after training, such that, the original FCN architecture remains

unchanged. Additionally, we found that the quality (mean absolute difference) of

the predicted distance maps is insufficient for improving the predicted segmentations

from the standard path (see Fig. 7.5).

7.2.3 MTL using Uncertainty-based Loss Weighting

Details of Uncertainty-based Loss Weighting can be found in Chapter 6 sub-

section 6.2.2.

7.2.4 Clinical Datasets

7.2.4.1 Left Ventricle Segmentation Challenge (LVSC)

This study employed 200 de-identified cardiac MRI image datasets from patients

suffering from myocardial infraction and impaired LV contraction available as a part of

the STACOM 2011 Cardiac Atlas Segmentation Challenge project [35, 36] database2.

Cine-MRI images in short-axis and long-axis views are available for each case. The

images were acquired using the Steady-State Free Precession (SSFP) MR imaging

protocol with the following settings: typical thickness ≤ 10mm, gap ≤ 2mm, TR

30−50ms, TE 1.6ms, flip angle 600, FOV 360mm, spatial resolution 0.7031 to 2.0833

mm2/pixel and 256 × 256mm image matrix using multiple scanners from various

manufacturers. Corresponding reference myocardium segmentation generated from

expert analyzed 3D surface finite element model are available for 100 training cases

throughout the cardiac cycle. The reference segmentation for remaining 100 validation

cases are retained by the organizers for an unbiased comparison of segmentation

2http://www.cardiacatlas.org/challenges/lv-segmentation-challenge/
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results submitted by the challenge participants.

7.2.4.2 Automated Cardiac Diagnosis Challenge (ACDC)

This dataset3 is composed of short-axis cardiac cine-MR images acquired for 150

patients divided into 5 evenly distributed subgroups: normal, myocardial infarction,

dilated cardiomyopathy, hypertropic cardiomyopathy, and abnormal right ventricle,

available as a part of the STACOM 2017 ACDC challenge [37]. The acquisitions were

obtained over a 6 year period using two MRI scanners of different magnetic strengths

(1.5T and 3.0T). The images were acquired using the SSFP sequence with the follow-

ing settings: thickness 5mm (sometimes 8mm), interslice gap 5mm, spatial resolution

1.37 to 1.68 mm2/pixel, 28 to 40 frames per cardiac cycle. Corresponding manual

segmentations for RV blood-pool, LV myocardium, and LV blood-pool, performed by

a clinical expert for the end-systole (ES) and end-diastole (ED) phases are provided

for 100 training cases, which we use for our cross-validation experiments. Manual

segmentations for the remaining 50 test cases are kept privately by the organizers,

such that an unbiased comparison of segmentation results can be performed upon

submission.

7.2.5 Data Preprocessing and Augmentation

SimpleITK [38] was used to resample short-axis images to a common resolution

of 1.5625 mm2/pixel and crop/zero-pad to a common size of 192×192 and 256×256

for LVSC and ACDC dataset, respectively. Image intensities were clipped at 99th

percentile and normalized to zero mean and unit standard deviation. Each dataset

was divided into 80% train, 10% validation, and 10% test set with five non-overlaping

folds for cross-validation. Train-validation-test fold was performed randomly over the

whole LVSC dataset, whereas it was performed per subgroup (stratified sampling)

for the ACDC dataset to maintain even distribution of subgroups over the training,

3https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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validation, and testing sets. The training images were subjected to random similarity

transform with: isotropic scaling of 0.8 to 1.2, rotation of 0o to 360o, and translation

of −1/8th to +1/8th of the image size along both x- and y-axes. The training set for

LVSC and ACDC dataset included the original images along with augmentation of

two and four randomly transformed versions of each image, respectively. We heavily

augment the ACDC dataset, as the labels are available only for the ES and ED phases,

whereas, lightly augment the LVSC dataset, as the labels are available throughout

the cardiac cycle.

7.2.6 Network Training and Testing Details

Networks implemented in PyTorch4 were initialized with the Kaiming uniform

initializer [39] and trained for 30 and 100 epochs for LVSC and ACDC dataset, re-

spectively, with batch size of 15 images. RMS prop optimizer [40] with a learning

rate of 0.0001 and 0.0005 for single- and multi-task networks, respectively, decayed

by 0.99 every epoch was used. We saved the model with best average Dice coefficient

on the validation set, and evaluated on the test set.

Networks were trained on the NVIDIA Titan Xp GPU. The distance map thresh-

old was selected empirically and set to a large value of 250 pixels, i.e. full distance

map. The cross-entropy and the MAD loss were initialized with equal weights of 1.0,

such that, the optimal weighting was learned automatically. The auxillary task of

distance map regression was removed after the network training. The obtained 2D

slice segmentations were rearranged into a 3D volume, and the largest connected com-

ponent for each heart chamber was retained to yield the final segmentation. Model

complexity and average timing requirements for training and testing the models is

shown in Table 7.1.

4https://github.com/pytorch/pytorch
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Table 7.1: Model complexity, training and testing time. The model size for DMR
networks are equivalent to corresponding baseline FCN architectures during test time.
The inference time for DMR networks without removing the regularization block are
shown in brackets.

Train Time
(min/epoch)

Test Time
(ms/volume)

#Parameters
(×106)

ACDC LVSC ACDC LVSC Train Test

SegNet 2.49 14.91 70 67 2.96 2.96

USegNet 2.41 14.49 70 67 3.75 3.75

UNet 2.65 15.50 72 68 4.10 4.10

DMR-SegNet 4.44 20.57 70(157) 63(94) 3.56 2.96

DMR-USegNet 4.84 19.03 73(158) 65(96) 4.35 3.75

DMR-UNet 4.85 21.16 75(160) 67(97) 4.70 4.10

7.2.7 Evaluation Metrics

We use overlap and surface distance measures, as detailed in Chapter 1 sub-

section 1.3.4, to evaluate the segmentation. Additionally, we evaluate the clinical

indices associated with the segmentation.

7.3 Results

7.3.1 Segmentation and Clinical Indices Evaluation

The proposed Distance Map Regularized (DMR) SegNet, USegNet, and UNet

models along with the baseline models were trained for the joint segmentation of RV

blood-pool, LV myocardium, and LV blood-pool from the ACDC challenge dataset.

The provided reference segmentation and the corresponding automatic segmentation

obtained from the DMR-UNet model for a test patient is shown in Fig. 7.3. Similarly,

Fig. 7.5 shows the segmentation results for 2D slices across the heart of a patient,

compared against the corresponding reference segmentation, obtained from different

networks. Automatic segmentation obtained from all networks, for ED and ES phases,
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Figure 7.3: Segmentation results for LV blood-pool, LV myocardium, and RV blood-
pool. First column shows the short-axis view, second and third columns show or-
thogonal long-axis views, and the fourth column shows generated three dimensional
models. Reference (top row) and segmentation obtained from the DMR-UNet model
(bottom row).

are evaluated against the reference segmentation and summarized in Table 7.2a; also

shown is the evaluation of subsequently computed clinical indices in Table 7.2b.

We observe consistent improvement in the average segmentation performance of

the models after the DM-Regularization. Specifically, there is statistically significant

improvement5 on several segmentation metrics for all evaluated models. Same results

manifest onto the clinical indices with better correlation and LoA on both EF and

myocardium mass. Furthermore, the DMR-UNet model outperforms other evaluated

networks in many segmentation metrics.

To further analyze the improvement in segmentation performance, we performed

a regional analysis by sub-dividing the slices into apical (25% slices in the apical re-

gion and beyond), basal (25% slices in the basal region and beyond) and mid-region

(remaining 50% mid slices), based on the reference segmentation. From Fig. 7.6a,

we can observe consistent improvement in segmentation performance at the prob-

lematic apical and basal slices [37]; however, due to the small size of these regions,

the improvement does not have a large effect on the overall performance, though it

5Wilcoxon signed-rank test performed for statistical significance test
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(a) Input volume (top row) with overlaid ground-truth segmentation (bottom row).

(b) Segmentation results for SegNet (top two rows) and DMR-SegNet (bottom two rows).

(c) Segmentation results for USegNet (top two rows) and DMR-USegNet (bottom two rows)

(d) Segmentation results for UNet (top two rows) and DMR-UNet (bottom two rows)

Figure 7.4: Ground-truth and automatic segmentation obtained from all trained mod-
els for a test patient. In each sub-figure, the segmentation obtained from the baseline
and regularized model are overlaid onto the volume and shown in first and third rows,
respectively; corresponding disagreement (in black) between the obtained segmenta-
tions and the ground-truth is shown in second and fourth rows, respectively.
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(a) Input volume with: (top row) ground-truth segmentation overlaid, (middle row)

segmentation obtained from the DMR-UNet model, and (bottom row) segmentation

obtained after thresholding the predicted distance map at zero levelset.

(b) Absolute difference between the ground-truth and predicted distance maps. First,

second, and third row show the error in RV, LV myocardium, and LV bloodpool,

respectively.

Figure 7.5: Visualization of (a) the segmentation obtained by thresholding the pre-
dicted distance map and (b) absolute error between the ground-truth and predicted
distance maps for all chambers. Shown is only a cropped region around the heart,
the error in predicted distance map is higher for the regions farther from the heart.
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Table 7.2: Evaluation of the average segmentation results on ACDC dataset for RV
blood-pool, LV myocardium, and LV blood-pool (mean value reported), obtained from
all networks against the provided reference segmentation. The statistical significance
of the results for DM regularized model compared against the baseline model are
represented by ∗ and ∗∗ for p-values less than 0.05 and 0.005, respectively. Also
shown are the clinical indices evaluated for each heart chamber. The best performing
model for each metric has been highlighted. SN: SegNet, USN: USegNet, UNet:
UNet.

(a) Evaluation of Average (across all heart chambers) Segmentation Results

SN
DMR
SN

USN
DMR
USN

UNet
DMR
UNet

End Diastole (ED)

Dice (%) 91.1 91.7∗∗ 91.5 92.0∗∗ 91.6 92.2∗∗

Jaccard (%) 84.0 85.1∗∗ 84.7 85.5∗∗ 85.0 85.9∗∗

MSD (mm) 0.55 0.53∗ 0.58 0.52∗ 0.54 0.53∗

HD (mm) 10.26 9.87 10.26 9.67 10.03 9.52

End Systole (ES)

Dice (%) 87.3 88.0∗ 87.7 88.7∗∗ 87.2 88.8∗

Jaccard (%) 78.1 79.3∗ 78.7 80.3∗∗ 78.3 80.4∗

MSD (mm) 0.92 0.85 0.92 0.84 1.08 0.83

HD (mm) 11.33 10.31∗ 11.66 10.91 12.61 10.96∗

(b) Evaluation of the Clinical Indices

SN
DMR
SN

USN
DMR
USN

UNet
DMR
UNet

Correlation Coefficient

LV EF 0.939 0.947 0.944 0.970 0.962 0.963

RV EF 0.874 0.871 0.866 0.895 0.856 0.870

Myo Mass 0.948 0.970 0.958 0.973 0.933 0.978

Bias+LOA

LV EF
1.00

(13.15)
0.31

(12.44)
0.58

(12.57)
-0.42

(9.24)
0.31

(10.41)
0.40

(10.40)

RV EF
1.04

(17.40)
1.77

(17.34)
0.85

(17.40)
0.38

(15.42)
0.09

(18.94)
0.29

(18.30)

Myo Mass
3.10

(32.94)
-0.43

(25.17)
0.35

(29.65)
0.21

(23.89)
2.85

(37.39)
0.80

(21.75)
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Figure 7.6: Mean and 95% bootstrap confidence interval for average Dice coefficient
on apical, basal, and mid slices. Top: Average Dice coefficient for LV blood-pool, LV
myocardium, and RV blood-pool segmentation on ACDC dataset (100 volumes). Bot-
tom: Dice coefficient for myocardium segmentation on LVSC dataset (1050 volumes).
SegNet: SN, DMR-SegNet: DMRSN, USegNet: USN, DMR-USegNet: DMRUSN,
UNet: UN, DMR-UNet: DMRUN.

is of significance when constructing patient specific models of the heart for simula-

tion purposes [41]. We postulate that the additional constraint imposed by a very

high negative distance assigned to empty apical/basal slices prevents the network

from over-segmenting these regions, hence, improving the regional dice overlap and

effectively reducing the overall Hausdorff distance.

To study the effect of the distance map regularization across the five patient sub-

groups, we plot the average Dice coefficient for each sub-group computed for all six

models in Fig. 7.7. As expected, we observe the segmentation performance is better

for the normal patients in comparison to the pathological cases. Furthermore, we

observe consistent improvement in segmentation performance after the distance map

regularization for all patient sub-groups.

We segmented the heart structures from 50 patients ACDC held-out testset and

submitted to the challenge organizers. Majority voting prediction of ensemble of

DMR-UNet models trained for five-fold cross-validation followed by a 3D connected

component analysis yielded the final segmentation. Table 7.3 shows the comparison
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Figure 7.7: Mean and 95% bootstrap confidence interval of average Dice coefficient for
segmentation results on ACDC dataset obtained from several architectures divided
according to the five sub-groups: DCM — dilated cardiomyopathy, HCM — hyper-
trophic cardiomyopathy, MINF — previous myocardial infarction, NOR — normal
subjects, and RV — abnormal right ventricle.

Table 7.3: Comparison of the segmentation results obtained from the DMR-UNet
model against the top three ACDC challenge participants, evaluated on the held-
out 50 patient challenge testset. The Dice metric, Hausdorff Distance (HD), and
correlation of clinical indices for all three heart chambers is shown.

End Diastole (ED) EF
LV RV Myo LV RV

Dice HD Dice HD Dice HD Corr Corr Corr

Baumgartner[42] 0.96 6.53 0.93 12.67 0.89 8.70 0.982 0.988 0.851

Khened[43] 0.96 8.13 0.94 13.99 0.89 9.84 0.990 0.989 0.858

Isensee[44] 0.97 7.38 0.95 10.12 0.90 8.72 0.989 0.991 0.901

DMR-UNet 0.96 6.05 0.94 9.52 0.89 7.92 0.989 0.989 0.851

End Systole (ES)
Baumgartner[42] 0.91 9.17 0.88 14.69 0.90 10.64 0.983
Khened[43] 0.92 8.97 0.88 13.93 0.90 12.58 0.979
Isensee[44] 0.93 6.91 0.90 12.14 0.92 8.67 0.985
DMR-UNet 0.92 8.16 0.88 13.05 0.91 8.39 0.987

of our segmentation results against the top three methods submitted to the challenge.

Baumgartner et al. [42] tested several architectures and found that 2D U-Net with

a cross-entropy loss performed the best. Khened et al. [43] used a 2D U-Net with

dense blocks and an inception first layer to obtain the segmentation. Isensee et al.
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ensembled 2D and 3D U-Net architectures trained with a Dice loss to obtain the best

result in the challenge. Our 2D DMR-UNet model is able to perform as good or better

than the other two 2D methods, however, the combination of 2D and 3D context has

marginal improvement in the Dice overlap metric. Based on this observation, we

believe the ensemble of 2D and 3D DMR-UNet model should be able to perform as

good or better than [44], which is not the main objective of this work. Nonetheless, we

can observe the constraint imposed by the DM regularization is successful in reducing

the errors in apical/basal regions, manifested in the improved Hausdorff distance.

Table 7.4: Evaluation of the segmentation results on LVSC dataset for LV my-
ocardium (mean values reported), obtained from all networks against the provided
reference segmentation. The statistical significance of the results for DM regularized
model compared against the baseline model are represented by ∗ and ∗∗ for p-values
less than 0.05 and 0.005, respectively. The best performing model for each metric has
been highlighted. SN: SegNet, USN: USegNet, UNet: UNet.

SN
DMR
SN

USN
DMR
USN

UNet
DMR
UNet

End Diastole (ED)

Dice (%) 82.2 83.0∗ 82.5 83.2∗∗ 83.1 83.6

Jaccard (%) 70.0 71.1∗ 70.4 71.5∗∗ 71.3 72.0

MSD (mm) 0.78 0.74 0.79 0.72∗ 0.74 0.70

HD (mm) 13.20 13.14 13.67 13.12 12.98 12.80

Mass (Corr) 0.908 0.937 0.923 0.938 0.917 0.936

Mass(gram)
(Bias+LOA)

2.56
(35.25)

-0.92
(29.52)

3.91
(32.48)

3.34
(29.08)

2.88
(33.75)

0.06
(29.92)

End Systole (ES)

Dice (%) 83.5 84.2 83.8 84.3∗ 84.3 84.6

Jaccard (%) 71.9 72.9 72.4 73.0∗ 73.0 73.5

MSD (mm) 0.81 0.77 0.77 0.78 0.74 0.75

HD (mm) 12.96 12.96 12.71∗ 13.71 13.08 12.51

Mass (Corr) 0.921 0.935 0.929 0.926 0.939 0.922

Mass(gram)
(Bias+LOA)

5.48
(32.49)

1.96
(29.58)

5.04
(30.92)

5.49
(31.49)

5.18
(28.79)

2.56
(32.18)

Table 7.4 shows the segmentation performance evaluated on the LVSC dataset,
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demonstrating superior performance of the DM regularized models over their baseline.

Specifically, there is statistically significant improvement on the Dice and Jaccard

metric for the ED phase. Furthermore, the correlation and LoA for the myocardial

mass improves after network regularization. The improvement in performance is

consistent across different heart regions as shown in Fig. 7.6b.

Table 7.5: Comparison of the LV myocardium segmentation results on the LVSC
validation set against the consensus segmentation (CS∗) as described in [36]. The
values for AU, AO, SCR, and INR are obtained from Table 2 in [36], CNR from
Table 3 in [45], FCN from Table 3 in [7], and DFCN from Table 12 in [43]. Values are
provided as mean (standard deviation), and in descending order by Jaccard index.
SA/FA — Semi/Fully-Automatic

Method SA/FA Jaccard Sensitivity Specificity PPV NPV

AU [46] SA
0.84

(0.17)
0.89

(0.13)
0.96

(0.06)
0.91

(0.13)
0.95

(0.06)

CNR [45] SA
0.77

(0.11)
0.88

(0.09)
0.95

(0.04)
0.86

(0.11)
0.96

(0.02)

FCN [7] FA
0.74

(0.13)
0.83

(0.12)
0.96

(0.03)
0.86

(0.10)
0.95

(0.03)

DFCN [43] FA
0.74

(0.15)
0.84

(0.16)
0.96

(0.03)
0.87

(0.10)
0.95

(0.03)

DMR-UNet FA
0.74

(0.16)
0.85

(0.16)
0.95

(0.03)
0.86

(0.10)
0.95

(0.03)

AO [47] SA
0.74

(0.16)
0.88

(0.15)
0.91

(0.06)
0.82

(0.12)
0.94

(0.06)

SCR [48] FA
0.69

(0.23)
0.74

(0.23)
0.96

(0.05)
0.87

(0.16)
0.89

(0.09)

INR [49] FA
0.43

(0.10)
0.89

(0.17)
0.56

(0.15)
0.50

(0.10)
0.93

(0.09)

We segmented the myocardium from the LVSC held-out validation set of 100

patients. Majority voting prediction from ensemble of DMR-UNet models trained

for five-fold cross-validation followed by a 3D connected-component analysis yielded

the final segmentation. Table 7.5 shows our segmentation results (computed per

slice) compared against several other semi-/fully-automatic algorithms. Reported

segmentation results are computed against the consensus segmentation (CS∗) built
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from multiple challenge submissions [36]. Segmentation results for the four challenge

participants — AU [46], AO [47], SCR [48], and INR [49], and the details on segmen-

tation evaluation metrics can be found in the challenge summary report [36]. The

AU method [46] used the interactive guide-point modeling technique to fit a finite

element cardiac model to the CMR data and required expert approval of all slices

and all frames. This segmentation was provided as the reference segmentation to

the challenge participants. The CNN regression (CNR) method [45] regressed the

endo- and epi-cardium contours in polar coordinates, while manually eliminating the

problematic slices beyond the apex and base of the heart, hence, obtaining a good

segmentation result. The mean (std dev) of Jaccard coefficients computed for our

DMR-UNet model in apical, mid, and basal slices are 0.66 (0.18), 0.77 (0.12), and

0.74 (0.17), respectively. Our DMR-UNet model has similar performance to compet-

ing fully-automatic segmentation algorithms based on the fully convolutional network

(FCN) [7] and the densely connected FCN (DFCN) [43] architectures. The DFCN

method involves a computationally expensive region of interest (ROI) identification

based on a Fourier transform applied across the cardiac cycle, followed by the circular

Hough transform; whereas our method requires minimal pre-processing.

Lastly, the segmentation performance on the LVSC dataset (Table 7.5) is sig-

nificantly lower than ACDC dataset (Table 7.3) due to large variability and noise

exhibited by the LVSC data as compared to the ACDC dataset.

7.3.2 Cross Dataset Evaluation (Transfer Learning)

To analyze the generalization ability of our proposed distance map regularized net-

works, we performed a cross-dataset segmentation evaluation. The networks trained

on ACDC dataset for five-fold cross-validation were tested on the LVSC dataset,

and vice versa; such that, the majority voting scheme produced the final per-pixel

segmentation. We observe a significant boost in Dice coefficient of 5% to 12% for

distance map regularized networks over their baseline models when trained on ACDC
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Table 7.6: Cross-dataset segmentation evaluation for LV myocardium segmentation
(mean values reported). The statistical significance of the results for DM regularized
model compared against the baseline model are represented by ∗ and ∗∗ for p-values
less than 0.01 and 0.001, respectively. SN: SegNet, USN: USegNet, UNet: UNet.

(a) Trained on ACDC and tested on LVSC (194 volumes)

SN
DMR
SN

USN
DMR
USN

UNet
DMR
UNet

End Diastole (ED)

Dice(%) 70.4 73.3∗∗ 68.3 76.6∗∗ 72.3 76.7∗∗

Jaccard(%) 55.6 58.9∗∗ 53.6 62.9∗∗ 58.0 63.1∗∗

MSD(mm) 2.68 2.07∗∗ 3.33 1.80∗∗ 2.46 1.80∗∗

HD(mm) 25.01 22.44∗∗ 26.93 20.33∗∗ 24.61 20.16∗∗

End Systole (ES)

Dice(%) 68.0 71.9∗∗ 65.5 74.9∗∗ 69.7 76.4∗∗

Jaccard(%) 53.3 58.1∗∗ 50.8 61.5∗∗ 55.5 63.1∗∗

MSD(mm) 3.56 2.93∗∗ 4.19 2.58∗∗ 3.49 2.35∗∗

HD(mm) 25.96 22.62∗∗ 27.37 21.67∗∗ 25.68 20.98∗∗

(b) Trained on LVSC and tested on ACDC (200 volumes)

SN
DMR
SN

USN
DMR
USN

UNet
DMR
UNet

End Diastole (ED)

Dice(%) 69.5 78.4∗∗ 62.5 80.1∗∗ 62.1 80.2∗∗

Jaccard(%) 56.5 66.3∗∗ 49.3 68.2∗∗ 49.3 68.5∗∗

MSD(mm) 4.92 1.77∗∗ 6.75 1.30∗∗ 6.29 1.59∗∗

HD(mm) 26.04 17.06∗∗ 29.08 13.93∗∗ 29.50 14.16∗∗

End Systole (ES)

Dice(%) 57.7 77.6∗∗ 51.9 79.3∗∗ 50.3 79.1∗∗

Jaccard(%) 45.4 65.3∗∗ 40.1 67.3∗∗ 38.8 67.1∗∗

MSD(mm) 9.59 2.53∗∗ 13.27 2.35∗∗ 10.97 2.52∗∗

HD(mm) 35.13 19.25∗∗ 39.60 18.77∗∗ 37.44 19.58∗∗

and tested on LVSC dataset (194 ED and ES volumes), as shown in Table 7.6a.

Similarly, the distance map regularized models significantly outperform the baseline

models by 23% to 42% improvement in Dice coefficient, when trained on LVSC and

tested on ACDC dataset (200 ED and ES volumes), as shown in Table 7.6b. The
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(a) From left to right: input image, ground-truth, and automatic segmentation overlay.

(b) 32 feature maps before first max-pooling operation.

(c) 256 feature maps from the bottle-neck layer.

(d) 32 feature maps before the final 1×1 convolution.

Figure 7.8: Feature maps visualized for the UNet (left column) and DMR-UNet (right
column) model. We can observe the UNet model preserves the intensity information
and propagates it throughout the network, hence, is more sensitive to the dataset-
specific intensity distribution. On the other hand, the DMR-UNet model focuses
more on the edges and other discriminative features, producing sparse feature maps,
while ignoring dataset-specific intensity distribution. However, the results obtained
for intra-dataset segmentation (shown here for ACDC dataset) is similar for both
models, whereas, there is a significant improvement in cross-dataset segmentation
after distance map regularization.
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improvement in generalization performance for the regularization networks trained

on LVSC dataset is higher, likely due to the availability of large number of hetero-

geneous training examples. Similar improvement can be observed in the MSD and

HD metric. We want to emphasize that our networks are trained separately on each

dataset and are completely unaware of the new data distribution, unlike a typical

domain adaptation [50] setting. Nonetheless, the distance map regularized networks

are able to generalize better to a new dataset compared to the baseline models.

We further analyzed the feature maps across different layers of the baseline and

distance map regularized networks, shown in Fig. 7.8. We can observe the baseline

models preserve the intensity information and propagate it throughout the network,

hence, they are more sensitive to the dataset-specific intensity distribution. On the

other hand, the multi-task regularized networks focus more on the edges and other

discriminative features, producing sparse feature maps, while ignoring dataset-specific

intensity distribution. Moreover, from the feature maps at the decoding layers, we ob-

serve a clear delineation of several cardiac structures in the regularized network, while

those for the baseline models are less discriminative, and contain information about

all structures present in the image. Hence, we verify that multi-task learning-based

distance map regularization helps the network learn generalizable features important

for the segmentation task, demonstrated by their excellent transfer learning capabili-

ties. Furthermore, the network learning curves in Fig. 7.9 shows small generalization

gap for the distance map regularized models, demonstrating their robustness against

overfitting.

7.3.3 Comparison with Models Trained on Different Loss

Functions

Several modifications to the categorical cross-entropy loss have been proposed to

improve segmentation results. A popular variant is weighted categorical cross-entropy,
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(a) Training and validation Dice loss for segmentation task. ACDC (left two columns) and LVSC (right two columns).
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(b) Training and validation mean absolute difference er-
ror for distance map regression task. ACDC (left) and
LVSC (right).

(c) Log Weights learned for cross-entropy and mean ab-
solute difference losses. ACDC (left) and LVSC (right).

Figure 7.9: Mean and 95% bootstrap confidence interval for training and validation
losses (a and b), and the learned weights for cross-entropy and mean absolute differ-
ence losses (c), on ACDC and LVSC dataset across five-fold cross-validation. Since the
cross-entropy loss is harder to interpret, we plot the corresponding dice loss computed
during training and validation. We can observe lower difference between the training
and validation dice loss for the distance map regularized models, demonstrating their
ability to prevent overfitting.
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where the loss contribution of each class is multiplied by a weight proportional to

the inverse frequency of that class in the training set. We compute the weights as

wc =
∑
cNc
Nc

, where c = {0, 1, ..., C − 1} for C classes and Nc is the number of pixels of

class c in the training set. The weights wc are then normalized by their median value

during weighted categorical cross-entropy loss computation.

Similarly, Ronneberger et al. [32] proposed a spatial weighting scheme, where the

pixels closer to segmentation boundaries were assigned higher weights, to incentify

the network to produce better segmentation results by avoiding misclassification of

boundary pixels. The spatial weight map is computed as:

w(x) = wc(x) + w0 · exp

(
−(d1(x) + d2(x))2

2σ2

)
(7.3)

where, wc is the weight map to balance the class frequencies, d1 and d2 are the dis-

tances to the border of nearest and second nearest object classes. In our experiments

we set w0 = 1.0 and σ = 5.0.

Table 7.7: Evaluation of the segmentation results on ACDC dataset for RV blood-
pool, LV myocardium, and LV blood-pool (mean values reported), obtained from dif-
ferent weighting schemes of the categorical cross-entropy loss function. UNet model
trained with cross-entropy loss: without any weighting, class frequency weighting,
spatial weighting (with uniform class weight), and spatial with class frequency weight-
ing, compared against the proposed DMR-UNet model.

None Class Spatial
Spatial
w/Class

DMR
UNet

End Diastole (ED)

Dice (%) 91.6 89.2 91.7 91.8 92.2

Jaccard (%) 85.0 81.2 85.1 85.2 85.9

MSD (mm) 0.54 0.71 0.53 0.51 0.53

HD (mm) 10.03 10.48 10.06 9.99 9.52

End Systole (ES)

Dice (%) 87.2 84.7 88.1 87.8 88.8

Jaccard (%) 78.3 74.6 79.3 79.0 80.4

MSD (mm) 1.08 1.25 0.89 0.95 0.83

HD (mm) 12.61 12.60 11.31 12.16 10.96
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Table 7.7 summarizes the segmentation results obtained on ACDC dataset for

UNet models trained on cross-entropy loss with several weighting schemes against the

proposed DMR-UNet model. Although class frequency weighted training has been

found to improve the performance of a model on limited availability of examples for

some classes, in our segmentation problem, we have a large number of examples (pix-

els) for each class. Furthermore, since the number of background pixels is very high

compared to other classes, the weight assigned to background pixels is extremely low,

hence discouraging the model to segment ambiguous pixels as a background class,

resulting in degraded segmentation performance, as shown in Table 7.7. Moreover,

while the spatial weighting scheme only provides a sight improvement over the un-

weighted cross-entropy loss, there is good improvement in the distance metric due to

the emphasis on the boundary pixels. Nevertheless, Table 7.7 clearly shows that our

proposed DMR-UNet model significantly outperforms all other weighting schemes,

yielding highest overlap and lowest distance metrics.

7.4 Discussion

We performed an extensive study on the effects of hyper-parameters on the per-

formance of the proposed regularization framework. Here we summarize the effects of

the learned vs. fixed task weighting, and various choices of the distance map thresh-

old. Furthermore, we analyzed the distribution of network weights before and after

regularization.

Task Weighting: At first, we initialized the weights for the cross-entropy and

MAD loss equally to 1.0. However, the learned weights for the cross-entropy and

MAD loss were around 0.01 and 17, and 0.02 and 13 for ACDC and LVSC dataset,

respectively, for the best performing models on the validation set.

To determine the effect of learned task weighting scheme presented in section

7.2.3, we analyzed the average Dice coefficient of the test set segmentation results
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Figure 7.10: Mean and 95% bootstrap confidence interval of average Dice coefficient
for Learned vs Fixed equal weighting. Learned task weighting statistically signifi-
cantly improves the segmentation performance.

for both ACDC (100 volumes) and LVSC (1050 volumes across the full cardiac cy-

cle) datasets with fixed versus learned weighting. From Fig. 7.10, we can observe

a significant improvement in average Dice coefficient (based on the 95% bootstrap

confidence intervals) with learned weights compared to fixed (equal) weighting. Since

the scales of the two losses are different, the equal weighting scheme emphasizes the

distance map regression task more than it should, hence deteriorating the segmen-

tation performance. On the other hand, the learned task weighting scheme is able

to automatically weigh the two losses, bringing them to a similar scale, such that

the two tasks are given equal importance, ultimately improving the segmentation

performance.

Effect of Distance Map Threshold: We selected three extreme values for the

distance map threshold: 5, 60, and 250 pixels. The network weights for cross-entropy

and MAD loss were equally initialized to (1, 1) and trained with automatically learned

task weighting for a fixed number of epochs. The average Dice coefficient on the test-

set obtained from the best performing models on the validation-set across five-fold

cross-validation is summarized in Fig. 7.11. We observe similar performance for

different threshold values, demonstrating the low sensitivity of the proposed method
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Figure 7.11: Mean and 95% bootstrap confidence interval of average Dice coefficient
for a range of distance map thresholds.

to the distance map threshold. Hence, we decided to use a very high threshold of 250

pixels, which is almost equivalent to regressing the full distance map and neglecting

this hyper-parameter.

Network Weight Distribution: We also analyzed the weight distribution of the

network before and after distance map regularization, as shown in Fig. 7.12. We

observe the number of non-zero weights increase after the distance map regulariza-

tion, hence, better utilizing the network capacity. A similar flattening of network

weight histogram has been reported for the dropout regularization and Bayesian neu-

ral networks [51], both reducing the overfitting and hence improving generalization.

Specifically, the network weights are randomly dropped during dropout, forcing the

network to use the remaining weights to identify the patterns in data (spreading the

weight histogram), hence creating an ensemble effect with reduced over-fitting and

improved generalization. We observe a similar pattern in the weight distribution after

the distance map regularization.



www.manaraa.com

174

(a) Weights distribution for SegNet and DMR-SegNet models.

(a) Weights distribution for USegNet and DMR-USegNet models.

(a) Weights distribution for UNet and DMR-UNet models.

Figure 7.12: Weights distribution before and after distance map regularization for
models trained across five-fold cross-validation. We can observe the number of non-
zero weights increases after the distance map regularization, hence, better utilizing
the network capacity.
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7.5 Conclusion

In this work we proposed and implemented a multi-task learning-based regular-

ization method for fully convolutional networks for semantic image segmentation and

demonstrated its benefits in the context of cardiac MR image segmentation. To im-

plement the proposed method, we appended a decoder network at the bottleneck layer

of existing FCN architectures to perform an auxiliary task of distance map prediction,

which is removed after training.

We automatically learned the weighting of the tasks based on their uncertainty.

As the distance map contains robust information regarding the shape, location, and

boundary of the object to be segmented, it facilitates the FCN encoder to learn robust

global features important for the segmentation task.

Our experiments verify that introducing the distance map regularization improves

the segmentation performance of three FCN architectures for both binary and multi-

class segmentation across two publicly available cardiac cine MRI datasets featuring

significant patient anatomy and image variability. Specifically, we observed consistent

improvement in segmentation performance in the challenging apical and basal slices

in response to the soft-constraints imposed by the distance map regularization. We

also showed consistent segmentation improvement on all five patient pathology in the

ACDC dataset. Furthermore, these improvements were also reflected on the computed

clinical indices important for the diagnosis of various heart conditions. Lastly, we

demonstrated the proposed regularization significantly improved the generalization

ability of the networks on cross-dataset segmentation (transfer learning), without

being aware of the new data distribution, with 5% to 42% improvement in average

Dice coefficient over the baseline FCN architectures.
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Chapter 8

Discussion, Conclusion, and Future

Work

This chapter revisits the challenges posed in the introduction chapter associated

with the segmentation of cardiac ultrasound and MRI images and demonstrate how

they have been overcome by the methods proposed in this dissertation. Future direc-

tions essential for the field is discussed.

8.1 The Big Picture

This dissertation is centered around one of the oldest topics in the computer vi-

sion: image segmentation. Specifically, we focus on the segmentation of the heart

from ultrasound and MR images to extract clinically relevant diagnostic information.

Although several segmentation approaches have been proposed to date, as summa-

rized in Chapter 1, segmentation is still an open problem. Furthermore, specific

image segmentation methods for different applications (e.g. natural, hyper-spectral,

medical images), different modalities (X-ray, Ultrasound, MRI, CT), and different or-

gans (e.g. brain, liver, heart etc.) are tailored specifically for that particular domain

to make best use of the available prior knowledge.
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The segmentation techniques explored in this dissertation rely on graph-cuts, atlas

based, and convolutional neural network based methods. These methods use the

global image context with incorporated prior information for segmentation. The

segmentation task formulated as an energy minimization problem in a graph can be

solved efficiently and quickly using the graph-cut technique [1], within a known factor

of the global minimum, providing highly accurate labeling. Hence, most effort in the

first half of the thesis focuses on defining the graph energy more accurately to improve

the segmentation performance. In the second half, we exploit the performance of the

convolutional neural networks to further improve the segmentation of heart chambers,

and subsequent clinical indices estimation.

It is very important to tailor the segmentation algorithm towards the imaging

modality and the organ under consideration. Hence, to segment the LV from the

tri-plane TEE image sequence, we rely on the local phase-based filtering technique [2]

and obtain the rough initial estimate of the LV blood-pool. Using this initial estimate,

the intensity likelihood (modeled as a Gaussian distribution) for the blood-pool, my-

ocardium, and background can be computed from the image and hence encoded into

the graph energy. The minimum energy configuration obtained from the graph-cut

labeling yields the final segmentation. Since the LV boundaries are more prominent

in the end-diastole phase, we segment the LV from this frame and propagate the

segmentation to other cardiac phases via biomechanics-based non-rigid registration

algorithm [3]. This method produces better segmentation results compared to seg-

menting individual frame, as presented in Chapter 2.

Although the local neighborhood information is inherently built in the graph for-

mulation, additional prior information of the heart geometry can be encoded into

the framework. Some papers [4–6] have explored the use of shape prior information

into the graph-cut framework, however, they require the shape prior to be initialized

manually. Here we automate the shape prior initialization using a image registra-

tion technique. We register training volumes to a reference patient and average the
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intensities and labels to obtain the average intensity and probabilistic atlas for the

structure of interest, respectively. The average intensity atlas is registered to a test

patient to transfer the probabilistic label, which is incorporated into the graph energy

to encode the prior shape information. However, since there is a large variability in

shape and size of the heart, and image registration produces poor results if not ini-

tialized properly, we iteratively refine the segmentation by updating the prior shape

as well as the class intensity distributions based on the latest graph-cut segmentation

result. Upon convergence, we obtain a robust automatic segmentation of the heart

chambers.

We apply the developed probabilistic atlas based iterative graph-cut method for

the slice-wise 2D segmentation of the LV (Chapter 3) and RV (Chapter 4) from

two different open-source short-axis cardiac cine MRI datasets [7, 8], with the pro-

vided manual labeling for the LV and RV, respectively. However, due to the slice-

misalignment in cine MR images, we were not able to leverage the whole 3D context

for segmentation. Hence, we train a convolutional neural network to predict the LV

center from each 2D short-axis slice, such that, a coherent 3D test volume can be

generated by aligning the predicted LV center for each slice in a straight line along

the long-axis. This approach allowed us to perform a full 3D segmentation using

the developed probabilistic atlas based iterative graph-cut method as presented in

Chapter 5.

We leverage and further enhance the power of convolutional neural network to

accurately segment the heart chambers from cardiac cine MRI datasets in final two

chapters. In Chapter 6, to compare and contrast segmentation-based and direct-

estimation based clinical indices estimation, we train a multi-task learning based fully

convolutional network to segment the myocardium and regress its area, simultane-

ously. The network also predicts the uncertainty of each task. The reciprocal of the

uncertainties are used to weigh the two tasks, such that the task with higher un-

certainty is weighted less and vice versa. Our evaluation on a 4D cardiac cine MRI
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dataset [9] demonstrates that multi-task learning yields better segmentation of the

myocardium. Furthermore, we show that segmentation-based estimation of clinical

index is better than that obtained from direct-estimation.

In Chapter 7, we apply the multi-task uncertainty based weighting scheme to

train a fully convolutional network to segment the LV blood-pool, RV blood-pool, and

LV myocardium, while simultaneously regressing their corresponding distance maps.

The distance map encodes the distance of each pixel from its closest segmented region,

hence providing a rich shape and location information of the object to be segmented.

We append a distance map regularization block to the bottleneck layer of a fully con-

volutional network to impose a weak shape and location constraint into the network.

The regularizer block is removed after training to reduce the computational cost.

We evaluate the proposed method on two open-source 4D cardiac cine MRI datasets

[9, 10] and show that it improves the segmentation performance on challenging apical

and basal slices with consistent improvement across healthy and pathological cases

for both intra- and cross-dataset segmentation of the heart chambers.

8.2 Summary and Contributions

• We proposed and evaluated a LV segmentation method from multi-plane TEE

image sequence and performed accurate computation of LV contractile functions

based on the 3D reconstruction, as described in Chapter 2. Since the tradi-

tional intensity based edge-detection methods are highly prone to the speckle

noise and low signal-to-noise ratio in ultrasound images, we detect the LV

boundaries based on the local-phase asymmetry, which is theoretically invariant

to the image contrast. We overcome the challenge of tissue inhomogeneity in

ultrasound images by modeling the intensities of the blood-pool, myocardium,

and background by a Gaussian distribution based on the image intensities. Simi-

larly, using the smoothness constraint encoded in the graph neighborhood struc-
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ture, we are able to overcome the challenges associated with missing anatom-

ical boundaries due to signal dropout and shadow artifacts. Furthermore, to

tackle the rapid motion of the LV chamber in the cardiac cycle, we employ a

biomechanics-based non-rigid image registration method to propagate the auto-

matic segmentation, obtained from the reliable end-diastole phase, throughout

the cardiac cycle.

• We proposed and evaluated an automatic segmentation method using the prob-

abilistic atlas prior into the iterative graph-cut framework. The use of addi-

tional prior information, based on the probabilistic atlas, improved the graph-

cut segmentation performance. We modeled the intensities of the blood-pool,

myocardium, and background classes by a Gaussian mixture model (GMM) to

tackle the problem of non-standardized intensity values in MRI and the intensity

fuzziness, due to the partial volume effect and blood-flow. As the LV shape is

fairly close to the ring shape across the apex-base axis, we were able to obtain a

good segmentation results for the LV blood-pool and myocardium, as discussed

in Chapter 3. However, the segmentation of the RV is more challenging due

to its crescent shape with high variability across the apex-base axis, which we

were able to segment accurately (as detailed in Chapter 4) using the same

framework, demonstrating its robustness and versatility.

• Due to the slice-wise acquisition of the cine MR images, the patient motion

and breathing introduces slice misalignment. Hence, most of the segmentation

methods, including the ones in Chapter 3 and 4, have been developed for

2D slice-wise segmentation. We proposed a new method for slice misalignment

correction by aligning the LV centers in a straight line along the long-axis.

The proposed method assumes that short-axis cine MR acquisitions are per-

pendicular to the LV long-axis, which is a reasonable assumption, provided the

radiologist followed the acquisition protocol correctly. Thus, in Chapter 5 we
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trained a convolutional neural network (CNN) to predict the LV centers for

each cine MR slice and generated a coherent 3D volume by correcting the slice

misalignment. Furthermore, we extended the probabilistic atlas prior based

iterative graph-cut framework for 3D segmentation, to exploit the 3D context

and improve the segmentation result.

• We leverage the hierarchical representation power of convolutional neural net-

works to extract multi-scale features important for the segmentation task from

cardiac cine MR images. A fully convolutional network trained on a large set

of MR images of healthy and pathological cases, with some artificial data aug-

mentation, has shown good promise in overcoming the challenges of intensity

fuzziness, indistinct boundaries, and variability of heart chambers across the

patients, leading to good segmentation results from cardiac MR images. In

Chapter 7, we proposed a multi-task learning framework to perform segmen-

tation and corresponding distance map regression, simultaneously, further im-

proving the robustness and segmentation performance of a fully convolutional

network. We show the proposed method is able to improve the segmentation

performance on the challenging apical and basal slices, with consistent improve-

ment across healthy and pathological cases. Furthermore, we demonstrate the

robustness of the proposed method to extract dataset agnostic features impor-

tant for segmentation, with significantly improved performance when trained

on one cardiac cine MRI dataset and tested on a different dataset.

• We studied the efficacy of the segmentation-based clinical indices estimation in

comparison to the direct-estimation method. In Chapter 6, we trained a multi-

task network to segment the myocardium and regress its area, simultaneously.

We demonstrated that segmentation-based area estimation is significantly bet-

ter than that obtained from direct regression. Furthermore, we advocate the

segmentation-based method is more interpretable, and easier to troubleshoot in
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case of erroneous results, in comparison to direct-estimation, as the radiologists

can visually inspect the segmentation results to infer the reliability of the com-

puted clinical indices. However, it should be noted that it is easier to obtain the

reference clinical index for direct-estimation compared to the reference per-pixel

segmentation required for segmentation-based method.

• The proposed segmentation techniques for cardiac ultrasound and cine MRI

images help obtain a better estimate of the cardiac contractile functions such

as blood-pool volume, ejection fraction, and myocardial mass, for the cardiac

health diagnosis in a clinic, making the job of a cardiologist faster, easier, and

more reproducible. It also enables the production of highly accurate models

for LV and RV chambers for personalized pre-operative planning as well as

intra-operative guidance.

8.3 Future Directions

Although a lot of research has been conducted to improve the segmentation of

heart chambers from cardiac cine MR images, there still exists challenges on correctly

segmenting the apical and basal slices, as well as, the segmentation of RV blood-pool

and LV myocardium, due to their large variability across patients [10]. Despite the

mis-alignment of slices in cine MR images, the temporal information on each slice can

help correctly identify and segment the challenging apical and basal slices, indicating

a good future direction.

The field can also benefit from accurate and robust algorithms to correct for

the slice-misalignment, incorporating both the short- and long-axis MR acquisition

information. As such, an open-source cardiac MR image database with true 3D MR

image acquisitions would enable researchers to develop machine learning algorithms

to correct for slice mis-alignments in cine MR images. Slice-misalignment correction

would enable incorporating 3D shape prior information of the heart chambers into the
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segmentation framework to overcome the challenges presented by the large variability

of heart chambers across the patients.

As can be observed from the progression of this thesis, the convolutional neural

network based methods are able to produce significantly better segmentation results

compared to the traditional atlas and graph-cut based methods, hence the CNNs de-

serve more investigation in the future. The convolutional neural network based meth-

ods should be equipped with shape prior information of heart-chambers to overcome

the challenges of generalization across heterogeneous dataset acquired from different

sites. Additionally, a smart combination of convolutional neural networks with tra-

ditional segmentation approaches (atlas, level-sets, and graph-cuts), exploiting the

benefits of each, could further improve the cardiac MRI segmentation results.

Specifically, in the context of convolutional neural networks, further exploration

of multi-task learning could be a potential future direction. One can segment a

slice and predict the slice location, simultaneously, to improve the segmentation per-

formance on the apical/basal slices. It would also be interesting to explore other

auxiliary tasks that can assist to obtain better segmentation results. Similarly, it will

be crucial to improve the robustness of these methods, as such, one can explore data

augmentation strategies to better simulate the variability of heart chambers across

the patients. Another potential direction is to learn an adversarial loss during network

training to better focus on the challenging regions of the images, hence improving the

segmentation performance. Similarly, one can employ generative models (variational

auto-encoders [11] or Generative Adversarial Networks [12]) to capture the distribu-

tion of heart geometry, and hence impose shape constraints into the CNN framework.

Finally, it will be critical to quantify the uncertainty [13] of model predictions, to

better assist the clinical decision making, suggesting Bayesian neural networks as a

good future direction for research.

Lastly, a large dataset with manual segmentation by multiple experts would en-

able the comparison of semi-/fully-automatic segmentation algorithms with respect
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to the inter-observer variability to reliably measure the effectiveness of the developed

segmentation algorithm vis-a-vis the gold standard annotations used routinely in the

clinical setting.
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